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Exercise 2.1.
Prove that the system of elementary sets

A := {A ⊂ Rn | A is the union of finitely many disjoint intervals}

is an algebra.

Solution: To prove that the collection of elementary sets A is an algebra, we need to show that
Rn ∈ A as well as the closedness of A with respect to taking complements and finite unions.

It is easy to see that Rn is an interval (see definition in Lecture Notes, a, b = ±∞ is allowed).
Therefore, it belongs to A. Let now A =

⋃m
k=1Ak where Ak are disjoint intervals. The complements

of the Ak can be expressed as:

Ack =

p(n)⋃
i=1

Bk,i

where p(n) depends on the dimension of Rn and determines how many pieces are needed to express
the complement as a union of intervals. As a result, Ack is again in A. Now, using de Morgan, we
see:

Ac =

(
m⋃
k=1

Ak

)c
=

m⋂
k=1

Ack ,

However, it is obvious (since the intersection of two intervals is another interval), that the intersec-
tion of two sets A,B ∈ A lies again in A. Therefore, we have shown Ac ∈ A.

Finally, let Ak =
⋃nk
l=1Akl ∈ A where Akl are pairwise disjoint intervals for k = 1, . . . ,m and

l = 1, . . . , nk. In this case,
⋃m
k=1Ak =

⋃m
k=1

⋃nk
l=1Akl is a finite union of intervals. In addition, they

can be chosen to be disjoint. To see this, let us consider the case m = 2, the general case follows
by repeated application of the case m = 2. For all l ∈ {1, . . . , n2}, we define:

Ã2l := A2l \
n1⋃
j=1

A1j = A2l ∩
n1⋂
j=1

Ac1j .

As we argued before, Ac1j is again an elementary subset and the finite intersection of elementary
subsets is again elementary (consider their decomposition into disjoint cubes to see this). Therefore,
Ã2l is elementary. Moreover, observe that all Ã2l are pairwise disjoint with each other and each of
the A1j . Therefore, using their decomposition into disjoint cubes, we can deduce that:

A1 ∪A2 ∈ A.

Consequently, we see
⋃m
k=1Ak ∈ A. This yields that A is an algebra.

A more direct proof can be given as follows: again, we are given a finite collection of elementary
sets A1, . . . , Am. For each 1 ≤ k ≤ n, let

−∞ =: ak0 < ak1 < ak2 < . . . < akqk−1 < akqk := +∞

be the finite collection of numbers which appear as one of the endpoints of the k-th factor of one
of the intervals that constitute one of the Aj .
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Namely, for each k ∈ {1, . . . , n}, let Sk be the union of the sets of endpoints of all the intervals Ik
that are the k-th factor of one of the I ⊂ Aj , together with ±∞. Since Sk is finite, we can write it
as {ak0, . . . , akqk}, where the elements are ordered increasingly and ak0 = −∞, akqk = +∞.

Consider then the finite collection of intervals

J =
{
J1 × · · · × Jn

∣∣ for each k, Jk = {aki } with 0 < i < qk or Jk = (aki , a
k
i+1) with 0 ≤ i < qk

}
.

It is clear that the intervals in J partition Rn, and that each Aj is a union of intervals in J .
Therefore the union A1 ∪ · · · ∪Am can be written as the (disjoint) union of those J ∈ J which are
contained in some Aj , and in particular is a disjoint union of intervals.

Note also that this also shows at once that A is closed under complements: defining J as above
only for the elementary set A, we see that A is the union of some intervals from J , therefore Ac is
the union of the remaining ones.

Exercise 2.2.
Let (X,Σ, µ) be a measure space. A subset A ∈ Σ is called µ-atom, if it holds µ(A) > 0 and
for every B ∈ Σ such that B ⊂ A, we have either µ(A \B) = 0 or µ(B) = 0.

(a) Let A be a µ-atom and B ∈ Σ such that B ⊂ A. Prove that either µ(B) = µ(A) or
µ(B) = 0.

Solution: If µ(B) = 0, we are done. Therefore, assume µ(A \ B) = 0. This gives by additivity
and monotonicity:

µ(B) ≤ µ(A) = µ(B) + µ(A \B) = µ(B),

thus yielding µ(A) = µ(B).

(b) Let A ∈ Σ and assume 0 < µ(A) < ∞. Moreover, assume that for all B ∈ Σ with
B ⊂ A, it holds that either µ(B) = 0 or µ(B) = µ(A). Show that A is a µ-atom.

Solution: If µ(B) = 0, we are done. Otherwise, we have µ(B) = µ(A) <∞ and we observe that,
by additivity, it holds:

µ(B) = µ(A) = µ(B) + µ(A \B).

Because µ(B) is finite, this implies µ(A \B) = 0 and thus A is a µ-atom.

(c) Assume that µ is σ-finite, that is, there is a countable collection {Sj} ⊂ Σ with µ(Sj) <∞
and X =

⋃
j Sj. Show that for every µ-atom A, it holds µ(A) <∞.

Solution: Since µ is σ-finite, we can write X =
⋃∞
j=1 Sj with Sj ∈ Σ and µ(Sj) < ∞. Up to

subtracting
⋃j−1
i=1 Si from Sj for each j, we may suppose that all the Sj are pairwise disjoint and

still in Σ. Define Aj := Sj ∩A ∈ Σ. Because Aj ⊂ A, it follows by the first part of the exercise that

µ(Aj) = 0 or µ(A) = µ(Aj) ≤ µ(Sj) <∞

for all j ∈ N. If the second case occurs for some j ∈ N, we are done. So it remains to consider
the case µ(Aj) = 0 for all j. Due to σ-additivity, this case implies µ(A) = 0, which concludes the
proof.

Exercise 2.3.
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Let X be an uncountable set and

B :=
{
E ⊂ X

∣∣ E or Ec countable
}
.

Show that µ : B → [0,∞] defined by

µ(E) :=

{
0 if E is countable

1 else

is a pre-measure on B.

Solution: Clearly µ(∅) = 0. Now assume that A, {Aj}j is a countable subfamily of B such that
A =

⋃
j Aj and such that the Aj ’s are pairwise disjoint.

If A is countable, this implies that Aj ⊂ A is also countable for every j ∈ N. Therefore:

µ(A) = 0 =

∞∑
j=1

0 =

∞∑
j=1

µ(Aj).

Otherwise, A is uncountable, which implies that there exists j0 ∈ N such that Aj0 is uncountable
as well. Furthermore, this means that Acj0 is countable by definition of B. Because Aj is contained
in Acj0 for all j 6= j0 by disjointness, this shows that Aj is countable if j 6= j0. Thus, we obtain

µ(A) = 1 = µ(Aj0) =
∞∑
j=1

µ(Aj).

This shows that µ is a pre-measure.

Exercise 2.4.
Let X be a set and µ : P(X) → [0,∞] a measure on X. Denote by Aµ the σ-algebra of
µ-measurable subsets of X. Let B ⊂ X be an arbitrary subset.

(a) Denote by µ B the restriction of µ to B defined by:

∀A ⊂ X : µ B(A) := µ(A ∩B).

Show that µ B is a measure.

Solution: Let us define µ̃ := µ B. It is obvious that µ̃(∅) = 0. Moreover, let A, {Aj}j∈N be a
collection of subsets of X such that

A ⊂
∞⋃
j=1

Aj .

It is clear that A ∩B, {Aj ∩B}j∈N satisfy the same inclusion. Therefore, as µ is a measure:

∞∑
j=1

µ̃(Aj) =

∞∑
j=1

µ(Aj ∩B)

≥ µ(A ∩B) = µ̃(A),

which implies that µ̃ is a measure.
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(b) Show that Aµ is a subset of the σ-algebra of (µ B)-measurable sets.

Solution: Let A ∈ Aµ and C ⊂ X be arbitrary and notice by A being µ-measurable:

µ̃(C ∩A) + µ̃(C \A) = µ(C ∩B ∩A) + µ((C \A) ∩B) = µ(C ∩B ∩A) + µ((C ∩B) \A)

= µ(C ∩B) = µ̃(C),

implying that A is µ̃-measurable.

Exercise 2.5.
Let X, Y be two sets, µ : P(X)→ [0,∞] a measure on X and f : X → Y a map. How can
we naturally define a “pushforward measure” f∗µ on Y ? Prove that for such a measure, if
Aµ denotes the σ-algebra of µ-measurable sets in X, then the collection of sets1

f∗(Aµ) := {B ⊆ Y | f−1(B) ∈ Aµ}

is a subset of the σ-algebra of f∗µ-measurable subsets of Y .

Solution: Define, for B ⊆ Y , f∗µ(B) := µ(f−1(B)). Clearly f∗µ(∅) = µ(f−1(∅)) = µ(∅) =
0, and given a countable collection {Bj} ⊂ P(Y ) and B ⊆

⋃
j Bj , it holds that f−1(B) ⊆

f−1
(⋃

j Bj

)
=
⋃
j f
−1(Bj), so that

f∗µ(B) = µ(f−1(B)) ≤
∑
j

µ
(
f−1(Bj)

)
=
∑
j

f∗µ(Bj),

proving that f∗µ is indeed a measure on Y .

Moreover, given B ∈ f∗(Aµ) and an arbitrary E ⊆ Y , it holds that f−1(E ∩B) = f−1(E)∩f−1(B)
and f−1(E \B) = f−1(E) \ f−1(B), so that

f∗µ(E) = µ(f−1(E)) = µ(f−1(E) ∩ f−1(B)) + µ(f−1(E) \ f−1(B))

= µ(f−1(E ∩B)) + µ(f−1(E \B))

= f∗µ(E ∩B) + f∗µ(E \B)

since f−1(B) is µ-measurable. It follows that B is f∗µ-measurable.

1This is the σ-algebra introduced in Exercise 1.4 from Sheet 1.

4 / 4


