Exercise 2.1.

Prove that the system of elementary sets

$$
\mathcal{A}:=\left\{A \subset \mathbb{R}^{n} \mid A \text { is the union of finitely many disjoint intervals }\right\}
$$

is an algebra.
Solution: To prove that the collection of elementary sets \mathcal{A} is an algebra, we need to show that $\mathbb{R}^{n} \in \mathcal{A}$ as well as the closedness of \mathcal{A} with respect to taking complements and finite unions.
It is easy to see that \mathbb{R}^{n} is an interval (see definition in Lecture Notes, $a, b= \pm \infty$ is allowed). Therefore, it belongs to \mathcal{A}. Let now $A=\bigcup_{k=1}^{m} A_{k}$ where A_{k} are disjoint intervals. The complements of the A_{k} can be expressed as:

$$
A_{k}^{c}=\bigcup_{i=1}^{p(n)} B_{k, i}
$$

where $p(n)$ depends on the dimension of \mathbb{R}^{n} and determines how many pieces are needed to express the complement as a union of intervals. As a result, A_{k}^{c} is again in \mathcal{A}. Now, using de Morgan, we see:

$$
A^{c}=\left(\bigcup_{k=1}^{m} A_{k}\right)^{c}=\bigcap_{k=1}^{m} A_{k}^{c},
$$

However, it is obvious (since the intersection of two intervals is another interval), that the intersection of two sets $A, B \in \mathcal{A}$ lies again in \mathcal{A}. Therefore, we have shown $A^{c} \in \mathcal{A}$.
Finally, let $A_{k}=\bigcup_{l=1}^{n_{k}} A_{k l} \in \mathcal{A}$ where $A_{k l}$ are pairwise disjoint intervals for $k=1, \ldots, m$ and $l=1, \ldots, n_{k}$. In this case, $\bigcup_{k=1}^{m} A_{k}=\bigcup_{k=1}^{m} \bigcup_{l=1}^{n_{k}} A_{k l}$ is a finite union of intervals. In addition, they can be chosen to be disjoint. To see this, let us consider the case $m=2$, the general case follows by repeated application of the case $m=2$. For all $l \in\left\{1, \ldots, n_{2}\right\}$, we define:

$$
\tilde{A}_{2 l}:=A_{2 l} \backslash \bigcup_{j=1}^{n_{1}} A_{1 j}=A_{2 l} \cap \bigcap_{j=1}^{n_{1}} A_{1 j}^{c} .
$$

As we argued before, $A_{1 j}^{c}$ is again an elementary subset and the finite intersection of elementary subsets is again elementary (consider their decomposition into disjoint cubes to see this). Therefore, $\tilde{A}_{2 l}$ is elementary. Moreover, observe that all $\tilde{A}_{2 l}$ are pairwise disjoint with each other and each of the $A_{1 j}$. Therefore, using their decomposition into disjoint cubes, we can deduce that:

$$
A_{1} \cup A_{2} \in \mathcal{A}
$$

Consequently, we see $\bigcup_{k=1}^{m} A_{k} \in \mathcal{A}$. This yields that \mathcal{A} is an algebra.
A more direct proof can be given as follows: again, we are given a finite collection of elementary sets A_{1}, \ldots, A_{m}. For each $1 \leq k \leq n$, let

$$
-\infty=: a_{0}^{k}<a_{1}^{k}<a_{2}^{k}<\ldots<a_{q_{k}-1}^{k}<a_{q_{k}}^{k}:=+\infty
$$

be the finite collection of numbers which appear as one of the endpoints of the k-th factor of one of the intervals that constitute one of the A_{j}.

Namely, for each $k \in\{1, \ldots, n\}$, let S^{k} be the union of the sets of endpoints of all the intervals I_{k} that are the k-th factor of one of the $I \subset A_{j}$, together with $\pm \infty$. Since S^{k} is finite, we can write it as $\left\{a_{0}^{k}, \ldots, a_{q_{k}}^{k}\right\}$, where the elements are ordered increasingly and $a_{0}^{k}=-\infty, a_{q_{k}}^{k}=+\infty$.
Consider then the finite collection of intervals

$$
\mathcal{J}=\left\{J_{1} \times \cdots \times J_{n} \mid \text { for each } k, J_{k}=\left\{a_{i}^{k}\right\} \text { with } 0<i<q_{k} \text { or } J_{k}=\left(a_{i}^{k}, a_{i+1}^{k}\right) \text { with } 0 \leq i<q_{k}\right\}
$$

It is clear that the intervals in \mathcal{J} partition \mathbb{R}^{n}, and that each A_{j} is a union of intervals in \mathcal{J}. Therefore the union $A_{1} \cup \cdots \cup A_{m}$ can be written as the (disjoint) union of those $J \in \mathcal{J}$ which are contained in some A_{j}, and in particular is a disjoint union of intervals.

Note also that this also shows at once that \mathcal{A} is closed under complements: defining \mathcal{J} as above only for the elementary set A, we see that A is the union of some intervals from \mathcal{J}, therefore A^{c} is the union of the remaining ones.

Exercise 2.2.

Let (X, Σ, μ) be a measure space. A subset $A \in \Sigma$ is called μ-atom, if it holds $\mu(A)>0$ and for every $B \in \Sigma$ such that $B \subset A$, we have either $\mu(A \backslash B)=0$ or $\mu(B)=0$.
(a) Let A be a μ-atom and $B \in \Sigma$ such that $B \subset A$. Prove that either $\mu(B)=\mu(A)$ or $\mu(B)=0$.

Solution: If $\mu(B)=0$, we are done. Therefore, assume $\mu(A \backslash B)=0$. This gives by additivity and monotonicity:

$$
\mu(B) \leq \mu(A)=\mu(B)+\mu(A \backslash B)=\mu(B),
$$

thus yielding $\mu(A)=\mu(B)$.
(b) Let $A \in \Sigma$ and assume $0<\mu(A)<\infty$. Moreover, assume that for all $B \in \Sigma$ with $B \subset A$, it holds that either $\mu(B)=0$ or $\mu(B)=\mu(A)$. Show that A is a μ-atom.

Solution: If $\mu(B)=0$, we are done. Otherwise, we have $\mu(B)=\mu(A)<\infty$ and we observe that, by additivity, it holds:

$$
\mu(B)=\mu(A)=\mu(B)+\mu(A \backslash B)
$$

Because $\mu(B)$ is finite, this implies $\mu(A \backslash B)=0$ and thus A is a μ-atom.
(c) Assume that μ is σ-finite, that is, there is a countable collection $\left\{S_{j}\right\} \subset \Sigma$ with $\mu\left(S_{j}\right)<\infty$ and $X=\bigcup_{j} S_{j}$. Show that for every μ-atom A, it holds $\mu(A)<\infty$.
Solution: Since μ is σ-finite, we can write $X=\bigcup_{j=1}^{\infty} S_{j}$ with $S_{j} \in \Sigma$ and $\mu\left(S_{j}\right)<\infty$. Up to subtracting $\bigcup_{i=1}^{j-1} S_{i}$ from S_{j} for each j, we may suppose that all the S_{j} are pairwise disjoint and still in Σ. Define $A_{j}:=S_{j} \cap A \in \Sigma$. Because $A_{j} \subset A$, it follows by the first part of the exercise that

$$
\mu\left(A_{j}\right)=0 \quad \text { or } \quad \mu(A)=\mu\left(A_{j}\right) \leq \mu\left(S_{j}\right)<\infty
$$

for all $j \in \mathbb{N}$. If the second case occurs for some $j \in \mathbb{N}$, we are done. So it remains to consider the case $\mu\left(A_{j}\right)=0$ for all j. Due to σ-additivity, this case implies $\mu(A)=0$, which concludes the proof.

Exercise 2.3.

Let X be an uncountable set and

$$
\mathcal{B}:=\left\{E \subset X \mid E \text { or } E^{c} \text { countable }\right\} .
$$

Show that $\mu: \mathcal{B} \rightarrow[0, \infty]$ defined by

$$
\mu(E):= \begin{cases}0 & \text { if } E \text { is countable } \\ 1 & \text { else }\end{cases}
$$

is a pre-measure on \mathcal{B}.
Solution: Clearly $\mu(\varnothing)=0$. Now assume that $A,\left\{A_{j}\right\}_{j}$ is a countable subfamily of \mathcal{B} such that $A=\bigcup_{j} A_{j}$ and such that the A_{j} 's are pairwise disjoint.
If A is countable, this implies that $A_{j} \subset A$ is also countable for every $j \in \mathbb{N}$. Therefore:

$$
\mu(A)=0=\sum_{j=1}^{\infty} 0=\sum_{j=1}^{\infty} \mu\left(A_{j}\right) .
$$

Otherwise, A is uncountable, which implies that there exists $j_{0} \in \mathbb{N}$ such that $A_{j_{0}}$ is uncountable as well. Furthermore, this means that $A_{j_{0}}^{c}$ is countable by definition of \mathcal{B}. Because A_{j} is contained in $A_{j_{0}}^{c}$ for all $j \neq j_{0}$ by disjointness, this shows that A_{j} is countable if $j \neq j_{0}$. Thus, we obtain

$$
\mu(A)=1=\mu\left(A_{j_{0}}\right)=\sum_{j=1}^{\infty} \mu\left(A_{j}\right) .
$$

This shows that μ is a pre-measure.

Exercise 2.4.

Let X be a set and $\mu: \mathcal{P}(X) \rightarrow[0, \infty]$ a measure on X. Denote by \mathcal{A}_{μ} the σ-algebra of μ-measurable subsets of X. Let $B \subset X$ be an arbitrary subset.
(a) Denote by $\mu\llcorner B$ the restriction of μ to B defined by:

$$
\forall A \subset X: \quad \mu\llcorner B(A):=\mu(A \cap B)
$$

Show that $\mu\llcorner B$ is a measure.
Solution: Let us define $\tilde{\mu}:=\mu \mathrm{L} B$. It is obvious that $\tilde{\mu}(\varnothing)=0$. Moreover, let $A,\left\{A_{j}\right\}_{j \in \mathbb{N}}$ be a collection of subsets of X such that

$$
A \subset \bigcup_{j=1}^{\infty} A_{j}
$$

It is clear that $A \cap B,\left\{A_{j} \cap B\right\}_{j \in \mathbb{N}}$ satisfy the same inclusion. Therefore, as μ is a measure:

$$
\begin{aligned}
\sum_{j=1}^{\infty} \tilde{\mu}\left(A_{j}\right) & =\sum_{j=1}^{\infty} \mu\left(A_{j} \cap B\right) \\
& \geq \mu(A \cap B)=\tilde{\mu}(A)
\end{aligned}
$$

which implies that $\tilde{\mu}$ is a measure.
(b) Show that \mathcal{A}_{μ} is a subset of the σ-algebra of $(\mu\llcorner B)$-measurable sets.

Solution: Let $A \in \mathcal{A}_{\mu}$ and $C \subset X$ be arbitrary and notice by A being μ-measurable:

$$
\begin{aligned}
\tilde{\mu}(C \cap A)+\tilde{\mu}(C \backslash A) & =\mu(C \cap B \cap A)+\mu((C \backslash A) \cap B)=\mu(C \cap B \cap A)+\mu((C \cap B) \backslash A) \\
& =\mu(C \cap B)=\tilde{\mu}(C),
\end{aligned}
$$

implying that A is $\tilde{\mu}$-measurable.

Exercise 2.5.

Let X, Y be two sets, $\mu: \mathcal{P}(X) \rightarrow[0, \infty]$ a measure on X and $f: X \rightarrow Y$ a map. How can we naturally define a "pushforward measure" $f_{*} \mu$ on Y ? Prove that for such a measure, if \mathcal{A}_{μ} denotes the σ-algebra of μ-measurable sets in X, then the collection of sets ${ }^{1}$

$$
f_{*}\left(\mathcal{A}_{\mu}\right):=\left\{B \subseteq Y \mid f^{-1}(B) \in \mathcal{A}_{\mu}\right\}
$$

is a subset of the σ-algebra of $f_{*} \mu$-measurable subsets of Y.

Solution: Define, for $B \subseteq Y, f_{*} \mu(B):=\mu\left(f^{-1}(B)\right)$. Clearly $f_{*} \mu(\varnothing)=\mu\left(f^{-1}(\varnothing)\right)=\mu(\varnothing)=$ 0 , and given a countable collection $\left\{B_{j}\right\} \subset \mathcal{P}(Y)$ and $B \subseteq \bigcup_{j} B_{j}$, it holds that $f^{-1}(B) \subseteq$ $f^{-1}\left(\bigcup_{j} B_{j}\right)=\bigcup_{j} f^{-1}\left(B_{j}\right)$, so that

$$
f_{*} \mu(B)=\mu\left(f^{-1}(B)\right) \leq \sum_{j} \mu\left(f^{-1}\left(B_{j}\right)\right)=\sum_{j} f_{*} \mu\left(B_{j}\right),
$$

proving that $f_{*} \mu$ is indeed a measure on Y.
Moreover, given $B \in f_{*}\left(\mathcal{A}_{\mu}\right)$ and an arbitrary $E \subseteq Y$, it holds that $f^{-1}(E \cap B)=f^{-1}(E) \cap f^{-1}(B)$ and $f^{-1}(E \backslash B)=f^{-1}(E) \backslash f^{-1}(B)$, so that

$$
\begin{aligned}
f_{*} \mu(E)=\mu\left(f^{-1}(E)\right) & =\mu\left(f^{-1}(E) \cap f^{-1}(B)\right)+\mu\left(f^{-1}(E) \backslash f^{-1}(B)\right) \\
& =\mu\left(f^{-1}(E \cap B)\right)+\mu\left(f^{-1}(E \backslash B)\right) \\
& =f_{*} \mu(E \cap B)+f_{*} \mu(E \backslash B)
\end{aligned}
$$

since $f^{-1}(B)$ is μ-measurable. It follows that B is $f_{*} \mu$-measurable.

[^0]
[^0]: ${ }^{1}$ This is the σ-algebra introduced in Exercise 1.4 from Sheet 1.

