Aufgabe 3.1.

Sei μ ein Mass auf X sowie $A \subset X$, sodass $\mu(A) < \infty$. Sei ferner $\{A_j\}_{j \in \mathbb{N}}$ eine abzählbare Familie von μ -messbaren Teilmengen von X mit $A_j \subset A$ für alle j. Zudem gelte $\mu(A_j) \ge c_0 > 0$ für alle $j \in \mathbb{N}$. Beweise:

$$\mu\Big(\limsup_{j\to\infty} A_j\Big) \ge c_0.$$

Lösung: Bemerke, dass wenn $\tilde{A}_j := \bigcup_{l \geq j} A_l$, dann ist \tilde{A}_j eine fallende Folge von μ -messbaren Mengen, sodass $A_j \subset \tilde{A}_j \subset A$. Folglich wissen wir

$$\mu(\tilde{A}_1) \le \mu(A) < \infty,$$

und somit, gemäss Theorem 1.2.13, iii), folgt:

$$\mu\left(\limsup_{j\to\infty} A_j\right) = \mu\left(\lim_{j\to\infty} \tilde{A}_j\right)$$
$$= \lim_{j\to\infty} \mu(\tilde{A}_j)$$
$$\geq \liminf_{j\to\infty} \mu(A_j) = c_0.$$

Aufgabe 3.2.

Sei λ das Lebesgue-Mass auf \mathbb{R} . Sei $E \subset [0,1]$ eine Lebesgue-messbare Menge mit positivem Lebesgue-Mass, also $\lambda(E) > 0$. Zeige, dass für jedes δ , $0 \leq \delta \leq \lambda(E)$, eine messbare Teilmenge von E existiert, sodass diese Teilmenge exakt das Mass δ hat.

Hinweis: Betrachte die Funktion, welche jedem $t \in [0, 1]$ das Mass von $[0, t] \cap E$ zuordnet. Ist diese Funktion stetig?

Lösung: Betrachte folgende Funktion $f:[0,1] \to \mathbb{R}$:

$$f(t) = \lambda([0, t] \cap E), \ t \in [0, 1].$$

Bemerke, dass f(0) = 0 und $f(1) = \lambda(E)$. Es ist zu zeigen, dass f stetig ist. Sei also $0 \le s < t \le 1$. Aufgrund der Additivität für disjunkte messbare Mengen $[0, s] \cap E$ und $(s, t] \cap E$ gilt:

$$f(t) = \lambda([0,t] \cap E) = \lambda([0,s] \cap E) + \lambda((s,t] \cap E) \le f(s) + t - s$$

wobei für die letzte Ungleichung die Monotonie verwendet wurde. Also gilt:

$$|f(t) - f(s)| \le |t - s|,$$

was die Stetigkeit impliziert.

Der Zwischenwertsatz besagt nun, dass es für jedes δ zwischen 0 und $\lambda(E)$ einen Punkt x mit $f(x) = \delta$ gibt. Dann erfüllt also $[0, x] \cap E$ (messbar aufgrund des Durchschnittes) die gesuchte Eigenschaft:

$$\lambda([0,x] \cap E) = \delta.$$

Aufgabe 3.3.

Sei

$$\mathcal{A} := \{ A \subset \mathbb{R}^n \mid A \text{ ist Vereinigung endlich vieler disjunkter Intervalle} \}$$

die Algebra der Elementarfiguren in \mathbb{R}^n . Zeige, dass die Volumen-Funktion vol aus der Vorlesung¹ auf den Elementarfiguren ein Prämass definiert.

Bemerkung: Für ein Intervall $I=I_1\times\ldots\times I_n$ in \mathbb{R}^n ist das Volumen durch

$$vol(I) = \prod_{k=1}^{n} vol(I_k)$$

gegeben, wobei $vol(I_k)$ die Länge des eindimensionalen Intervalles I_k ist.

Lösung: Es sei $\{A_k\}_k$ eine abzählbare, paarweise disjunkte Familie von Elementarfiguren und man nehme an, dass $A = \bigcup_{k=1}^{\infty} A_k$ auch eine Elementarfigur ist. Zu zeigen ist:

$$\operatorname{vol}(A) = \sum_{k=1}^{\infty} \operatorname{vol}(A_k).$$

Durch Ersetzen von A_k durch dessen Bausteine kann man annehmen, dass jedes A_k ein Intervall ist. Die \geq -Ungleichung ist leicht zu sehen, weil

$$\operatorname{vol}(A) \ge \sum_{k=1}^{m} \operatorname{vol}(A_k)$$

für jedes m aufgrund der Monotonie des Volumens gilt.

Für die umgekehrte Ungleichung, sei $\varepsilon > 0$ und sei $B \subset A$ eine kompakte Elementarfigur, sodass $\operatorname{vol}(A) \leq \operatorname{vol}(B) + \varepsilon$ ist, falls $\operatorname{vol}(A) < \infty$ ist oder $\operatorname{vol}(B) \geq \varepsilon^{-1}$ ist, falls $\operatorname{vol}(A) = \infty$ ist. Dann kann man offene Intervalle U_k wählen, sodass $U_k \supseteq A_k \cap B$ und $\operatorname{vol}(U_k) \leq \operatorname{vol}(A_k \cap B) + 2^{-k}\varepsilon$ gelten. Alle diese Mengen können durch das Verschieben der Endpunkte der Intervalle konstruiert werden.

Bemerke, dass B kompakt ist und durch $\{U_k\}$ überdeckt wird. Daher existiert eine endliche Überdeckung U_{k_1}, \ldots, U_{k_m} und somit gilt:

$$\operatorname{vol}(B) \leq \sum_{i=1}^{m} \operatorname{vol}(U_{k_i}) \leq \sum_{k=1}^{\infty} \operatorname{vol}(U_k) \leq \sum_{k=1}^{\infty} \left(\operatorname{vol}(A_k \cap B) + 2^{-k} \varepsilon \right) \leq \sum_{k=1}^{\infty} \operatorname{vol}(A_k) + \varepsilon.$$

Wenn $\varepsilon \to 0$ geht, konvergiert die linke Seite der Ungleichung gegen $\operatorname{vol}(A)$ und die rechte Seite gegen $\sum_{k=1}^{\infty} \operatorname{vol}(A_k)$, was die \leq -Ungleichung beweist.

Aufgabe 3.4.

Sei X eine beliebige Menge mit mehr als einem Element und betrachte das Mass $\mu : \mathcal{P}(X) \to [0, +\infty]$ gegeben durch:

$$\mu(A) = \begin{cases} 1 & \text{falls } A \neq \emptyset \\ 0 & \text{sonst} \end{cases}$$

¹Definition 1.3.1 im Skript.

ETH Zürich HS 2022

Gib ein Beispiel einer nicht μ -messbaren Teilmenge.

Lösung: Es ist leicht zu sehen, dass eine Menge A μ -messbar ist genau dann, wenn $A \in \{\emptyset, X\}$. Nimm an $A \neq \emptyset, X$. In dem Fall existieren Elemente $x, y \in X$ sodass $x \in A$ und $y \in A^c$. Daher gilt:

$$\mu(X) = 1 \neq 2 = \mu(X \setminus A) + \mu(X \cap A).$$

Umgekehrt ist klar, dass \emptyset und X stets messbar sind. Also ist jede Menge $A \neq \emptyset, X$ nicht μ -messbar.