Aufgabe 4.1.

Zeige, dass das Lebesgue-Mass invariant unter Translationen und Rotationen, also unter allen Bewegungen der Form

$$\Phi: \mathbb{R}^n \to \mathbb{R}^n, \quad \Phi(x) = x_0 + Rx,$$

für $x_0 \in \mathbb{R}^n$ und $R \in O(n)$, ist.

Hinweis: Es kann die Invarianz des Jordan-Masses verwendet werden, siehe Satz 9.3.2. in Struwe's Skript.

Lösung: Sei I zunächst ein Intervall. Dann ist $\Phi(I)$ eine Jordan-messbare Menge, dessen Volumen mit dem Volumen von I übereinstimmt. Aufgrund der Bewegungsinvarianz des Jordan-Masses μ (siehe Analysis I/II) gilt, dass $\mathcal{L}^n(\Phi(I)) = \mu(\Phi(I)) = \mu(I) = \mathcal{L}^n(I)$.

Sei nun weiters G offen in \mathbb{R}^n und $G = \bigcup_{k=1}^{\infty} I_k$ für disjunkte Intervalle I_k . Dann ist $\Phi(G)$ offen (da Φ^{-1} stetig ist) und $\Phi(G) = \bigcup_{k=1}^{\infty} \Phi(I_k)$ für disjunkte \mathcal{L}^n -messbare $\Phi(I_k)$. Also gilt wie oben:

$$\mathcal{L}^n(\Phi(G)) = \sum_{k=1}^{\infty} \mathcal{L}^n(\Phi(I_k)) = \sum_{k=1}^{\infty} \mathcal{L}^n(I_k) = \mathcal{L}^n(G).$$

Für beliebige Mengen A, G in \mathbb{R}^n gilt:

$$A \subset G, G$$
 offen $\Leftrightarrow \Phi(A) \subset \Phi(G), \Phi(G)$ offen

also

$$\mathcal{L}(A) = \mathcal{L}\Big(\bigcup_{i \in \mathbb{N}} \{a_i\}\Big) = \sum_{i \in \mathbb{N}} \mathcal{L}(\{a_i\}) = 0.$$

Aufgabe 4.2.

Zeige: Jede abzählbare Teilmenge von R ist eine Borel-Menge und eine Lebesgue-Nullmenge.

Lösung: Die σ -Algebra der Borel-Mengen \mathcal{B} ist die von den offenen Mengen erzeugte σ -Algebra. Abgeschlossene Mengen sind als Komplemente von offenen Mengen auch in \mathcal{B} . Somit gilt, da einzelne Punkte in \mathbb{R}^n abgeschlossene Mengen definieren:

$$A = \{a_1, a_2, \ldots\} = \bigcup_{i \in \mathbb{N}} \{a_i\} \in \mathcal{B} ,$$

als abzählbare Vereinigung.

Jeder einzelne Punkt $\{a_i\}$ ist eine Lebesgue-Nullmenge, denn:

$$\mathcal{L}(\{a_i\}) = \lim_{k \to \infty} \mathcal{L}((a_i - \frac{1}{k}, a_i + \frac{1}{k})) = \lim_{k \to \infty} \frac{2}{k} = 0.$$

Mit der σ -Additivität (disjunkte messbare Mengen) folgt daher für die abzählbare Vereinigung

$$\mathcal{L}(A) = \mathcal{L}\Big(\bigcup_{i \in \mathbb{N}} \{a_i\}\Big) = \sum_{i \in \mathbb{N}} \mathcal{L}(\{a_i\}) = 0.$$

Aufgabe 4.3.

Zeige: Die offene Kugel $B(x,r) := \{y \in \mathbb{R}^n \mid |y-x| < r\}$ und die abgeschlossene Kugel $\overline{B(x,r)} := \{y \in \mathbb{R}^n \mid |y-x| \le r\}$ sind Jordan-messbar und ihr Jordansches Mass ist $c_n r^n$, wobei $c_n > 0$ eine nur von n abhängige Kostante ist.

Lösung: Zunächst zeigen wir, dass das Jordansche Mass translationsinvariant ist und sich gut unter Streckungen benimmt.

Behauptung 1: Wenn eine beschränkte Menge $A \subset \mathbb{R}^n$ Jordan-messbar ist, dann ist A+x Jordan-messbar für alle $x \in \mathbb{R}^n$ und $\mu(A+x) = \mu(A)$ (μ ist das Jordansche Mass, siehe Section 1.4 im Skript).

Beweis. Wenn $E \subset A$ eine Elementarfigur ist, dann ist E + x auch eine Elementarfigur, die in A + x enthalten ist, und es gilt $\operatorname{vol}(E + x) = \operatorname{vol}(E)$. Dies impliziert, dass $\underline{\mu}(A + x) = \underline{\mu}(A)$. Man beweist ähnlich für $\overline{\mu}(A + x) = \overline{\mu}(A)$ und die Behauptung folgt.

Behauptung 2: Wenn eine beschränkte Menge $A \subset \mathbb{R}^n$ Jordan-messbar ist, dann ist $tA = \{tx \mid x \in A\}$ Jordan-messbar für alle $0 < t < \infty$ und $\mu(tA) = t^n \mu(A)$.

Beweis. Betrachte eine Elementarfigur $E \subset A$, dann ist tE eine Elementarfigur mit $\operatorname{vol}(tE) = t^n \operatorname{vol}(E)$, die in tA enthalten ist. Wir können ähnlich für Elementarfiguren argumentieren, die A enthalten.

Deshalb reicht es aus, den Fall $x = 0 \in \mathbb{R}^n$ und r = 1 zu betrachten. Wir werden beweisen, dass $\underline{\mu}(B(0,1)) = \overline{\mu}(\overline{B(0,1)})$ gilt. Dies impliziert sofort, dass B(0,1) und $\overline{B(0,1)}$, mit dem gleichen Mass $c_n := \mu(B(0,1)) = \mu(\overline{B(0,1)})$, Jordan-messbar sind.

Betrachte die folgende Menge:

$$\mathcal{I}_k = \{[a,b) \subset \mathbb{R}^n \mid a = 2^{-k}(a_1,\ldots,a_n), \ b = 2^{-k}(a_1+1,\ldots,a_n+1), \ a_i \in \mathbb{Z}\},\$$

d.h. die standard Partition von \mathbb{R}^n mit Quadern der Seitenlänge 2^{-k} .

Sei nun $\mathcal{I}'_k = \{I \in \mathcal{I}_k \mid I \subset B(0,1)\}$ die Menge der Quadern in \mathcal{I}_k , die in B(0,1) enthalten sind, und definiere $A_k := \bigcup_{I \in \mathcal{I}'_k} I \subset B(0,1)$.

Sei k gross genug, sodass $2^{-k}\sqrt{n} < 1$ und definiere $r_k := 1 - 2^{-k}\sqrt{n} > 0$. Sei $x = (x_1, \dots, x_n)$ ein Punkt in $\overline{B(0, r_k)}$. Dann ist der offene Würfel $Q = (x_1 - 2^{-k}, x_1 + 2^{-k}) \times \cdots \times (x_n - 2^{-k}, x_n + 2^{-k})$ in der Kugel $B(x, 2^{-k}\sqrt{n})$ enthalten, und somit gilt $Q \subset B(0, 1)$.

Für jedes i sei $a_i = \lfloor 2^k x_i \rfloor \in \mathbb{Z}$, wobei $\lfloor \cdot \rfloor$ die Abrundungsfunktion bezeichnet, damit $2^{-k}a_i \leq x_i < 2^{-k}(a_i+1)$ hält. Somit gilt es auch, dass $x_i - 2^{-k} < 2^{-k}a_i$ und $2^{-k}(a_i+1) \leq x_i + 2^{-k}$. Daraus ergibt sich:

$$x_i \in [2^{-k}a_i, 2^{-k}(a_i+1)) \subset (x_i - 2^{-k}, x_i + 2^{-k}).$$

Deshalb haben wir die folgenden Inklusionen:

$$x \in [2^{-k}a_1, 2^{-k}(a_1+1)) \times \cdots \times [2^{-k}a_n, 2^{-k}(a_n+1)) \subset Q \subset B(0,1).$$

Somit liegt x in einem Intervall, das zu \mathcal{I}'_k gehört, und dies bedeutet, dass $x \in A_k$.

Bis jetzt haben wir gezeigt, dass $\overline{B(0,r_k)} \subset A_k$, also $A_k \subset B(0,1) \subset \overline{B(0,1)} \subset r_k^{-1}A_k$ gilt. Daraus folgt:

 $\overline{\mu}\left(\overline{B(0,1)}\right) \le \operatorname{vol}\left(r_k^{-1}A_k\right) = r_k^{-n}\operatorname{vol}(A_k) \le r_k^{-n}\underline{\mu}(B(0,1)).$

Schliesslich lassen wir $k \to \infty$ streben, sodass $r_k \to 1$, und wir erhalten die Ungleichung $\overline{\mu}\left(\overline{B(0,1)}\right) \le \mu(B(0,1))$. Die umgekehrte Ungleichung ist trivial.

Bemerkung. Eine alternative Beweisidee besteht darin zu erkennen, dass die Kugel $B^n(0,1)$ durch Funktionen beschrieben werden kann. Genauer gesagt, sei $f: \overline{B^{n-1}(0,1)} \to \mathbb{R}$ die Funktion $f(x) = \sqrt{1-|x|^2}$, und $\bar{f}: \mathbb{R}^{n-1} \to \mathbb{R}$ ihre Fortsetzung durch 0 auf \mathbb{R}^{n-1} . Da f stetig ist und $\overline{B^{n-1}(0,1)}$ kompakt ist, ist f gleichmässig stetig, und es ist leicht zu sehen, dass das gleiche für \bar{f} gilt.

Sei $\varepsilon > 0$. Dann können wir k gross genug wählen, sodass für jedes Intervall J in der dyadischen Partition \mathcal{J}_k von \mathbb{R}^{n-1} mit Länge 2^{-k} (die wie oben definiert werden kann),

$$\sup_{J} \bar{f} - \inf_{J} \bar{f} \le \varepsilon$$

gilt. Wir definieren zwei endliche Mengen von Intervallen, $\mathcal{J}_k^- \subset \mathcal{J}_k^+ \subset \mathcal{J}_k$, wie folgt:

$$\mathcal{J}_k^- := \{ J \in \mathcal{J}_k \mid J \subseteq B^{n-1}(0,1) \}$$

und

$$\mathcal{J}_k^+ := \{ J \in \mathcal{J}_k \mid J \cap \overline{B^{n-1}(0,1)} \neq \varnothing \}.$$

Es ist klar, dass jedes Intervall $J \in \mathcal{J}_k^+$ in $[-1,1] \times \cdots \times [-1,1]$ enthalten ist. Nun definieren wir die Elementarfiguren

$$A_{\bar{k}}^{-} := \bigcup_{J \in \mathcal{J}_{\bar{k}}^{-}} J \times (-\inf_{J} \bar{f}, \inf_{J} \bar{f}) \subset \mathbb{R}^{n}$$

und

$$A_k^+ := \bigcup_{J \in \mathcal{J}_{k^+}^+} J \times [-\sup_J \bar{f}, \sup_J \bar{f}] \subset \mathbb{R}^n.$$

Dann gilt $A_k^- \subseteq B^n(0,1) \subset \overline{B^n(0,1)} \subseteq A_k^+$ und

$$\begin{split} \operatorname{vol}(A_k^+) - \operatorname{vol}(A_k^-) &= \sum_{J \in \mathcal{J}_k^+} 2 \sup_J \bar{f} \operatorname{vol}(J) - \sum_{J \in \mathcal{J}_k^-} 2 \inf_J \bar{f} \operatorname{vol}(J) \\ &= \sum_{J \in \mathcal{J}_k^+} 2 \left(\sup_J \bar{f} - \inf_J \bar{f} \right) \operatorname{vol}(J) \leq 2\varepsilon \sum_{J \in \mathcal{J}_k^+} \operatorname{vol}(J) \\ &= 2\varepsilon \operatorname{vol} \left(\bigcup_{J \in \mathcal{J}_k^+} J \right) \leq 2\varepsilon \operatorname{vol} \left([-1, 1]^{n-1} \right) = 2^n \varepsilon. \end{split}$$

Daher sehen wir, dass für jedes $\varepsilon > 0$ $\overline{\mu}(\overline{B(0,1)}) \le \underline{\mu}(B(0,1)) + 2^n \varepsilon$ gilt. Dies zeigt, dass die Kugel Jordan-messbar ist.

Aufgabe 4.4.

(a) Sei $A \subset \mathbb{R}$ eine Teilmenge mit Lebesgue-Mass $\mathcal{L}^1(A) > 0$. Zeige, dass eine Teilmenge $B \subset A$ existiert, welche **nicht** \mathcal{L}^1 -messbar ist.

Lösung: Dank der Translations-Invarianz von \mathcal{L}^1 und nachdem man möglicherweise eine geeignete Teilmenge von A genommen hat, können wir annehmen, dass $A \subset (0,1)$. Dann setzen wir $B_j := A \cap P_j$, wobei P_j definiert ist wie in der Vorlesung, vgl. Gl. (1.5.4). Es wurde gezeigt, dass wenn $B_j \mathcal{L}^1$ -messbar ist, so muss es Lebesgue-Mass 0 haben aufgrund von $B_j \subset P_j$. Folglich, wenn alle B_j messbar wären, so erhalten wir wegen ihrer Disjunktheit und $\cup_j B_j = A$:

$$0 < \mathcal{L}^{1}(A) = \sum_{j=1}^{\infty} \mathcal{L}^{1}(B_{j}) = 0.$$

Dies widerspricht unseren Annahmen.

(b) Finde ein Beispiel einer abzählbaren, paarweise disjunkten Familie $\{E_k\}_k$ von Teilmengen von \mathbb{R} , sodass:

$$\mathcal{L}^1\Big(\bigcup_{k=1}^{\infty} E_k\Big) < \sum_{k=1}^{\infty} \mathcal{L}^1(E_k).$$

Lösung: Man erinnere sich an die Definition der Mengen P_j aus der Vorlesung. Diese Familie liefert genau das gewünschte Beispiel.

Aufgabe 4.5.

Fixiere $0 < \beta < 1/3$ und definiere $I_1 = [0, 1]$. Für alle $n \ge 1$, entferne aus den Teilintervallen von I_n jeweils ein zentriertes Teilintervall der Länge β^n . So wird $I_{n+1} \subset I_n$ gebildet. Desweiteren definieren wir $C_\beta = \bigcap_{n=1}^\infty I_n$ als die verallgemeinerte Cantor-Menge entsprechend zu β . Zeige:

(a) C_{β} ist Lebesgue-messbar mit $\mathcal{L}^1(C_{\beta}) = 1 - \frac{\beta}{1-2\beta}$.

Lösung: Die Menge I_n ist messbar, da sie aus 2^{n-1} Intervallen besteht, und ihr Mass ist $\mathcal{L}^1(I_n) = \mathcal{L}^1(I_{n-1}) - 2^{n-2}\beta^{n-1}$ für alle $n \geq 2$, mit $\mathcal{L}^1(I_1) = 1$. Daher ist

$$\mathcal{L}^{1}(I_{n}) = 1 - \sum_{k=1}^{n-1} 2^{k-1} \beta^{k} = 1 - \frac{1}{2} \sum_{k=1}^{n-1} (2\beta)^{k} = 1 - \frac{1}{2} \left(\frac{1 - (2\beta)^{n}}{1 - 2\beta} - 1 \right) = 1 - \frac{\beta - 2^{n-1} \beta^{n}}{1 - 2\beta}.$$

Folglich ist $C_{\beta} = \bigcap_{n=1}^{\infty} I_n$ Lebesgue-messbar mit Mass

$$\mathcal{L}^{1}(C_{\beta}) = \lim_{n \to \infty} \mathcal{L}^{1}(I_{n}) = 1 - \frac{\beta}{1 - 2\beta}.$$

(b) C_{β} ist nicht Jordan-messbar. Allerdings gilt es $\underline{\mu}(C_{\beta}) = 0$ und $\overline{\mu}(C_{\beta}) = 1 - \frac{\beta}{1-2\beta} > 0$.

Lösung: Bemerke zuerst, dass das Innere von C_{β} leer ist: ein offenes Intervall (a,b) kann für n gross genug nicht in I_n enthalten sein, weil I_n aus Intervallen mit Länge $(1 - \frac{\beta}{1-2\beta})2^{-(n-1)} + \frac{\beta^n}{1-2\beta}$ besteht, und dies für n gross genug kleiner als b-a ist. Daher ist $\underline{\mu}(C_{\beta}) = 0$.

Andererseits gilt $\overline{\mu}(C_{\beta}) \geq \mathcal{L}^{1}(C_{\beta}) = 1 - \frac{\beta}{1-2\beta}$. Das ist eigentlich eine Gleichung, da I_{n} eine Elementarfigur ist und somit gilt $\overline{\mu}(C_{\beta}) \leq \inf_{n \geq 1} \mathcal{L}^{1}(I_{n}) = 1 - \frac{\beta}{1-2\beta}$. Da $\overline{\mu}(C_{\beta}) = 1 - \frac{\beta}{1-2\beta} > 0$ für $0 < \beta < 1/3$, ist C_{β} nicht Jordan-messbar.