Exercise 4.1.

Prove that the Lebesgue measure is invariant under translations, reflections and rotations, i.e. under all motions of the form

$$
\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad \Phi(x)=x_{0}+R x
$$

for $x_{0} \in \mathbb{R}^{n}$ and $R \in O(n)$.
Hint: You may use the invariance of the Jordan measure, see Satz 9.3.2 in Struwe's lecture notes.

Solution: Let $I \subset \mathbb{R}^{n}$ be an interval. In this case, $\Phi(I)$ is a Jordan measurable set whose volume actually agrees with the volume of I. Due to the invariance of the Jordan measure μ with respect to these motions (see Satz 9.3.2 in Struwe's lecture notes), it holds that $\mathcal{L}^{n}(\Phi(I))=\mu(\Phi(I))=$ $\mu(I)=\mathcal{L}^{n}(I)$.

Let now G be an open subset of \mathbb{R}^{n} and $G=\bigcup_{k=1}^{\infty} I_{k}$ for some disjoint collection of intervals I_{k} (see Lemma 1.3.4 in the Lecture Notes). Then $\Phi(G)$ is again open (because Φ^{-1} is continuous) and $\Phi(G)=\bigcup_{k=1}^{\infty} \Phi\left(I_{k}\right)$ where $\Phi\left(I_{k}\right)$ are disjoint \mathcal{L}^{n}-measurable subsets. As above, we observe

$$
\mathcal{L}^{n}(\Phi(G))=\sum_{k=1}^{\infty} \mathcal{L}^{n}\left(\Phi\left(I_{k}\right)\right)=\sum_{k=1}^{\infty} \mathcal{L}^{n}\left(I_{k}\right)=\mathcal{L}^{n}(G)
$$

For arbitrary subsets A, G of \mathbb{R}^{n}, it holds

$$
A \subset G, G \text { open } \quad \Longleftrightarrow \quad \Phi(A) \subset \Phi(G), \Phi(G) \text { open }
$$

and consequently

$$
\mathcal{L}^{n}(\Phi(A))=\inf _{A \subset G, G \text { open }} \mathcal{L}^{n}(\Phi(G))=\inf _{A \subset G, G \text { open }} \mathcal{L}^{n}(G)=\mathcal{L}^{n}(A) .
$$

Exercise 4.2.

Show that every countable subset of \mathbb{R} is a Borel set and has Lebesgue measure zero.

Solution: The σ-algebra of Borel subsets \mathcal{B} is the σ-algebra generated by all open subsets. Closed subsets belong to \mathcal{B}, because they are the complements of open subsets. As a result, since single points in \mathbb{R}^{n} define closed subsets, it holds

$$
A=\left\{a_{1}, a_{2}, \ldots\right\}=\bigcup_{i \in \mathbb{N}}\left\{a_{i}\right\} \in \mathcal{B},
$$

where A is any countable subset of \mathbb{R}.
A single point $\left\{a_{i}\right\}$ forms a set of Lebsegue measure 0 because

$$
\mathcal{L}\left(\left\{a_{i}\right\}\right)=\lim _{k \rightarrow \infty} \mathcal{L}\left(\left(a_{i}-\frac{1}{k}, a_{i}+\frac{1}{k}\right)\right)=\lim _{k \rightarrow \infty} \frac{2}{k}=0
$$

Combined with the σ-additivity (for disjoint measurable sets), it is immediate that for countable unions of point sets, we have

$$
\mathcal{L}(A)=\mathcal{L}\left(\bigcup_{i \in \mathbb{N}}\left\{a_{i}\right\}\right)=\sum_{i \in \mathbb{N}} \mathcal{L}\left(\left\{a_{i}\right\}\right)=0 .
$$

Exercise 4.3.

Show that the open ball $B(x, r):=\left\{y \in \mathbb{R}^{n}| | y-x \mid<r\right\}$ and the closed ball $\overline{B(x, r)}:=$ $\left\{y \in \mathbb{R}^{n}| | y-x \mid \leq r\right\}$ in \mathbb{R}^{n} are Jordan measurable with Jordan measure $c_{n} r^{n}$, for some constant $c_{n}>0$ depending only on n.

Solution: We first show how the Jordan measure behaves under translations and dilations.

Claim 1: If $A \subset \mathbb{R}^{n}$ bounded is Jordan measurable, then $A+x$ is Jordan measurable for all $x \in \mathbb{R}^{n}$ and $\mu(A+x)=\mu(A)$ (where μ is the Jordan measure, see Section 1.4 in the Lecture Notes).

Proof. If $E \subset A$ is an elementary set, then $E+x$ is an elementary set contained in $A+x$ and $\operatorname{vol}(E+x)=\operatorname{vol}(E)$. This implies easily that $\underline{\mu}(A+x)=\underline{\mu}(A)$. Similarly one obtains $\bar{\mu}(A+x)=$ $\bar{\mu}(A)$, which proves the claim above.

Claim 2: If $A \subset \mathbb{R}^{n}$ bounded is Jordan measurable, then $t A=\{t x \mid x \in A\}$ is Jordan measurable for all $0<t<\infty$ with $\mu(t A)=t^{n} \mu(A)$.

Proof. Consider an elementary subset $E \subset A$, then $t E$ is an elementary subset contained in $t A$ with $\operatorname{vol}(t E)=t^{n} \operatorname{vol}(E)$. Similarly we can argue for elementary sets containing A, proving the claim.

Hence, it is sufficient to prove the result for $x=0 \in \mathbb{R}^{n}$ and $r=1$. In particular we will show that $\underline{\mu}(B(0,1))=\bar{\mu}(\overline{B(0,1)})$, which proves directly that $B(0,1)$ and $\overline{B(0,1)}$ are Jordan measurable with the same measure $c_{n}:=\mu(B(0,1))=\mu(\overline{B(0,1)})$.
Consider the following set of intervals with side length 2^{-k}

$$
\mathcal{I}_{k}=\left\{[a, b) \subset \mathbb{R}^{n} \mid a=2^{-k}\left(a_{1}, \ldots, a_{n}\right), b=2^{-k}\left(a_{1}+1, \ldots, a_{n}+1\right), a_{i} \in \mathbb{Z}\right\},
$$

namely the standard partition of \mathbb{R}^{n} with intervals of side length 2^{-k}. Now let $\mathcal{I}_{k}^{\prime}=\left\{I \in \mathcal{I}_{k} \mid I \subset\right.$ $B(0,1)\}$ be the set of intervals in \mathcal{I}_{k} contained in $B(0,1)$ and define $A_{k}:=\bigcup_{I \in \mathcal{I}_{k}^{\prime}} I \subset B(0,1)$.
Let k be large enough that $2^{-k} \sqrt{n}<1$ and set $r_{k}:=1-2^{-k} \sqrt{n}>0$. Given a point $x=$ $\left(x_{1}, \ldots, x_{n}\right) \in \overline{B\left(0, r_{k}\right)}$, consider the open cube $Q=\left(x_{1}-2^{-k}, x_{1}+2^{-k}\right) \times \cdots \times\left(x_{n}-2^{-k}, x_{n}+2^{-k}\right)$, which is contained inside the ball $B\left(x, 2^{-k} \sqrt{n}\right) \subseteq B(0,1)$.
For each i, let $a_{i}=\left\lfloor 2^{k} x_{i}\right\rfloor \in \mathbb{Z}$ be the integer part of $2^{k} x_{i}$, so that $2^{-k} a_{i} \leq x_{i}<2^{-k}\left(a_{i}+1\right)$. Then it holds that $x_{i}-2^{-k}<2^{-k} a_{i}$ and $2^{-k}\left(a_{i}+1\right) \leq x_{i}+2^{-k}$, so

$$
x_{i} \in\left[2^{-k} a_{i}, 2^{-k}\left(a_{i}+1\right)\right) \subset\left(x_{i}-2^{-k}, x_{i}+2^{-k}\right) .
$$

Thus we have the following inclusions:

$$
x \in\left[2^{-k} a_{1}, 2^{-k}\left(a_{1}+1\right)\right) \times \cdots \times\left[2^{-k} a_{n}, 2^{-k}\left(a_{n}+1\right)\right) \subset Q \subset B(0,1) .
$$

Therefore x is contained in an interval which belongs to \mathcal{I}_{k}^{\prime}, thus $x \in A_{k}$.
This shows that $\overline{B\left(0, r_{k}\right)} \subset A_{k}$, so $A_{k} \subset B(0,1) \subset \overline{B(0,1)} \subset r_{k}^{-1} A_{k}$. Thus

$$
\bar{\mu}(\overline{B(0,1)}) \leq \operatorname{vol}\left(r_{k}^{-1} A_{k}\right)=r_{k}^{-n} \operatorname{vol}\left(A_{k}\right) \leq r_{k}^{-n} \underline{\mu}(B(0,1)) .
$$

Finally letting $k \rightarrow \infty$, since $r_{k} \rightarrow 1$, we get the inequality $\bar{\mu}(\overline{B(0,1)}) \leq \underline{\mu}(B(0,1))$, while the opposite inequality is trivial.

Remark. An alternative proof can be given by considering the n-dimensional closed ball $\overline{B^{n}(0,1)} \subset$ \mathbb{R}^{n} as the set of points that lie between the graphs of $-f$ and f, where $f: \overline{B^{n-1}(0,1)} \rightarrow \mathbb{R}$ is the function $f(x)=\sqrt{1-|x|^{2}}$. Since f is continuous and $\overline{B^{n-1}(0,1)}$ is compact, f is uniformly continuous, and the same is true for the extension $\bar{f}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ of f which is zero outside of the unit ball.
Therefore given $\varepsilon>0$ we can take k large enough that, for the dyadic decomposition \mathcal{J}_{k} of \mathbb{R}^{n-1} into intervals of side length 2^{-k} as above, it holds that

$$
\sup _{J} \bar{f}-\inf _{J} \bar{f} \leq \varepsilon
$$

for each interval $J \in \mathcal{J}_{k}$. Let $\mathcal{J}_{k}^{-} \subseteq \mathcal{J}_{k}^{+} \subset \mathcal{J}_{k}$ be the finite collections of intervals defined by

$$
\mathcal{J}_{k}^{-}:=\left\{J \in \mathcal{J}_{k} \mid J \subseteq B^{n-1}(0,1)\right\}
$$

and

$$
\mathcal{J}_{k}^{+}:=\left\{J \in \mathcal{J}_{k} \mid J \cap \overline{B^{n-1}(0,1)} \neq \varnothing\right\} .
$$

It is clear that every interval in \mathcal{J}_{k}^{+}is contained in $[-1,1] \times \cdots \times[-1,1]$. We use these collections to define the elementary sets

$$
A_{k}^{-}=\bigcup_{J \in \mathcal{J}_{k}^{-}} J \times\left(-\inf _{J} \bar{f}, \inf _{J} \bar{f}\right) \subset \mathbb{R}^{n}
$$

and

$$
A_{k}^{+}=\bigcup_{J \in \mathcal{J}_{k}^{+}} J \times\left[-\sup _{J} \bar{f}, \sup _{J} \bar{f}\right] \subset \mathbb{R}^{n} .
$$

It is then clear that $A_{k}^{-} \subseteq B^{n}(0,1) \subset \overline{B^{n}(0,1)} \subseteq A_{k}^{+}$and that

$$
\begin{aligned}
\operatorname{vol}\left(A_{k}^{+}\right)-\operatorname{vol}\left(A_{k}^{-}\right) & =\sum_{J \in \mathcal{J}_{k}^{+}} 2 \sup _{J} \bar{f} \operatorname{vol}(J)-\sum_{J \in \mathcal{J}_{k}^{-}} 2 \inf _{J} \bar{f} \operatorname{vol}(J) \\
& =\sum_{J \in \mathcal{J}_{k}^{+}} 2\left(\sup _{J} \bar{f}-\inf _{J} \bar{f}\right) \operatorname{vol}(J) \leq 2 \varepsilon \sum_{J \in \mathcal{J}_{k}^{+}} \operatorname{vol}(J) \\
& =2 \varepsilon \operatorname{vol}\left(\bigcup_{J \in \mathcal{J}_{k}^{+}} J\right) \leq 2 \varepsilon \operatorname{vol}\left([-1,1]^{n-1}\right)=2^{n} \varepsilon .
\end{aligned}
$$

Thus $\bar{\mu}(\overline{B(0,1)}) \leq \underline{\mu}(B(0,1))+2^{n} \varepsilon$ for every $\varepsilon>0$, proving the Jordan measurability of the ball.

Exercise 4.4.

(a) Let $A \subset \mathbb{R}$ be a subset with Lebesgue measure $\mathcal{L}^{1}(A)>0$. Show that there exists a subset $B \subset A$ which is not \mathcal{L}^{1}-measurable.

Solution: By the translation invariance of \mathcal{L}^{1} and possibly taking a subset of A, we may assume $A \subset(0,1)$. Now define $B_{j}:=A \cap P_{j}$, where P_{j} is defined as in (1.5.4) of thte Lecture Notes. It was shown that if B_{j} is \mathcal{L}^{1}-measurable, it must have measure 0 due to $B_{j} \subset P_{j}$. Therefore, if all B_{j} are measurable, we obtain due to their pairwise disjointness and $\cup_{j} B_{j}=A$:

$$
0<\mathcal{L}^{1}(A)=\sum_{j=1}^{\infty} \mathcal{L}^{1}\left(B_{j}\right)=0
$$

which contradicts our assumptions.
(b) Find an example of a countable, pairwise disjoint collection $\left\{E_{k}\right\}_{k}$ of subsets in \mathbb{R}, such that

$$
\mathcal{L}^{1}\left(\bigcup_{k=1}^{\infty} E_{k}\right)<\sum_{k=1}^{\infty} \mathcal{L}^{1}\left(E_{k}\right) .
$$

Solution: Recall the definition of P_{j} from the lecture (equation (1.5.4) in the Lecture Notes). This collection yields precisely the desired example.

Exercise 4.5.

Fix some $0<\beta<1 / 3$ and define $I_{1}=[0,1]$. For every $n \geq 1$, let $I_{n+1} \subset I_{n}$ be the collection of intervals obtained removing from every interval in I_{n} its centered open subinterval of length β^{n}. Then define by $C_{\beta}=\bigcap_{n=1}^{\infty} I_{n}$, the fat Cantor set corresponding to β.
Show that:
(a) C_{β} is Lebesgue measurable with measure $\mathcal{L}^{1}\left(C_{\beta}\right)=1-\frac{\beta}{1-2 \beta}$.

Solution: The set I_{n} is Lebesgue measurable, since it consists of 2^{n-1} intervals, and has measure $\mathcal{L}^{1}\left(I_{n}\right)=\mathcal{L}^{1}\left(I_{n-1}\right)-2^{n-2} \beta^{n-1}$ for all $n \geq 2$, with $\mathcal{L}^{1}\left(I_{1}\right)=1$. Hence

$$
\mathcal{L}^{1}\left(I_{n}\right)=1-\sum_{k=1}^{n-1} 2^{k-1} \beta^{k}=1-\frac{1}{2} \sum_{k=1}^{n-1}(2 \beta)^{k}=1-\frac{1}{2}\left(\frac{1-(2 \beta)^{n}}{1-2 \beta}-1\right)=1-\frac{\beta-2^{n-1} \beta^{n}}{1-2 \beta} .
$$

As a result $C_{\beta}=\bigcap_{n=1}^{\infty} I_{n}$ is Lebesgue measurable with measure

$$
\mathcal{L}^{1}\left(C_{\beta}\right)=\lim _{n \rightarrow \infty} \mathcal{L}^{1}\left(I_{n}\right)=1-\frac{\beta}{1-2 \beta} .
$$

(b) C_{β} is not Jordan measurable. Indeed it holds $\underline{\mu}\left(C_{\beta}\right)=0$ and $\bar{\mu}\left(C_{\beta}\right)=1-\frac{\beta}{1-2 \beta}>0$.

Solution: First note that C_{β} has empty interior, which follows from the fact that I_{n} consists of 2^{n-1} intervals of length $\left(1-\frac{\beta}{1-2 \beta}\right) 2^{-(n-1)}+\frac{\beta^{n}}{1-2 \beta}$, which converges to 0 as $n \rightarrow \infty$. Therefore $\underline{\mu}\left(C_{\beta}\right)=0$. On the other hand $\bar{\mu}\left(C_{\beta}\right) \geq \mathcal{L}^{1}\left(C_{\beta}\right)=1-\frac{\beta}{1-2 \beta}$ and this is actually an equality since I_{n} is an elementary set for all $n \geq 1$ and therefore $\bar{\mu}\left(C_{\beta}\right) \leq \inf _{n \geq 1} \mathcal{L}^{1}\left(I_{n}\right)=1-\frac{\beta}{1-2 \beta}$. Hence $\bar{\mu}\left(C_{\beta}\right)=1-\frac{\beta}{1-2 \beta}$, which is greater than 0 for $0<\beta<1 / 3$. Hence C_{β} is not Jordan measurable.

