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Exercise 5.1.
The goal of this exercise is to show that the Cantor triadic set C is uncountable. For that,
recall quickly the construction of C: Every x ∈ [0, 1] can be expanded in base 3, i.e., can be
written as x =

∑∞
i=1 di(x)3−i for di(x) ∈ {0, 1, 2}. The set C is then defined as the set of

those x ∈ [0, 1] that do not have any digit 1 in their 3-expansion, i.e.:,

C := {x ∈ [0, 1] | di(x) ∈ {0, 2}, ∀i ∈ N}.

Now, the Cantor-Lebesgue function F is defined by

F : C → [0, 1], F

(
∞∑
i=1

ai
3i

)
:=

∞∑
i=1

ai
2i+1

.

(a) Show that F (0) = 0 and F (1) = 1.

Solution: We see 0 =
∑∞

i=1 0 · 3−i and as a result, F (0) =
∑∞

i=1 0 · 2−(i+1) = 0. For 1 we have the
expansion 1 = 0.2222..., so 1 =

∑∞
i=1 2 · 3−i and therefore

F (1) =

∞∑
i=1

2 · 1

2i+1
=

1

2
·
∞∑
i=0

1

2i
=

1

2
· 1

1− 1
2

= 1.

(b) Show that F is well-defined and continuous on C.

Solution: In general, expansions in the base 3 of an element x ∈ [0, 1] are not unique, see for
example 0.1 = 0.022222..... However, if we restrict ourselves to expansions only using the coefficients
0 and 2, the expansion becomes unique, which shows that F is well-defined on C. (It could be
easily shown that F would even be well-defined on [0, 1] by investigating periodic expansions more
closely).

We now proceed to show that F is continuous on C. Let ε > 0. Take any x ∈ C and {xn}∞n=0 any
sequence in C converging to x. Take N ∈ N such that 2−N < ε. Because of the convergence of
{xn}∞n=0 to x, there is a M > N such that |xn − x| < 3−M , for all n > M . This implies that x und
xn lie in the same interval of Cn for all n > M , where

Cn = {x ∈ [0, 1] | di(x) ∈ {0, 2},∀i ≤ n},

is the n-th approximation of the Cantor set C (see lecture). In particular, this shows that di(x) =
di(xn) for any i ≤M . Consequently, we see that

|F (xn)− F (x)| ≤
∞∑

k=M+1

1

2k
=

1

2M
<

1

2N
< ε,

which implies the continuity of F .

(c) Show that F is surjective.

Solution: Let y ∈ [0, 1] be any element. The expansion of y in the basis 2 is assumed to be
y =

∑∞
k=1 bk · 2−k with bk ∈ {0, 1}. Define ak := 2bk for all k ≥ 1. In this case, x =

∑∞
k=1 ak · 3−k
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is by definition an element of C (because ak ∈ {0, 2}) and it holds

F (x) = F

( ∞∑
k=1

ak
3k

)
=

∞∑
k=1

ak
2k+1

=

∞∑
k=1

bk
2k

= y.

Therefore, F is surjective.

(d) Conclude that C is uncountable.

Solution: F is a continuous map, which sends C surjectively onto [0, 1]. As [0, 1] is uncountable,
the set C has to be uncountable as well.

Exercise 5.2.
Let E be the collection of all numbers in [0, 1] whose decimal expansion with respect to the
basis 10 has no sevens appearing.

Recall that some decimals have two possible expansions. We are taking the convention that
no expansion should be identically zero from some digit onward; for example 27

100
should be

written as 0, 269999.... and not as 0, 27.

Prove that E is a Lebesgue measurable set and determine its Lebesgue measure.

Solution: We can express any x ∈ [0, 1] in the following form:

x = 0.a1a2a3 . . .

where aj ∈ {0, 1, . . . , 9} for any j ∈ N. If x ∈ [0, 1] \ E, then at least one of the aj is equal to 7.
Therefore, for x ∈ [0, 1] \ E, let us define

n(x) := min
{
j ∈ N | aj = 7

}
,

for which it holds
0.a1 . . . an(x)−17 < x ≤ 0.a1 . . . an(x)−18,

due to the convention that the decimal expansion does not vanish after finitely many digits and
where we write 0.a1 . . . an(x)−18 meaning 0.a1 . . . an(x)−1799999 . . ..

Therefore, we obtain the inclusion

[0, 1] \ E ⊂
∞⋃
n=1

{
(0.a1 . . . an−17, 0.a1 . . . an−18] | a1, . . . , an−1 6= 7

}
The converse inclusion is obvious from the definition of E. Hence [0, 1]\E is Borel, being a countable
union of pairwise disjoint intervals, which implies that E is Borel as well.

To conclude, we compute the Lebesgue measure of [0, 1] \ E. For this, we first observe

L1
(
(0.a1 . . . an−17, 0.a1 . . . an−18]

)
=

1

10n
,
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ETH Zürich
HS 2022

and, noting that we have 9n−1 possibilities to choose the parameters a1, . . . , an−1, we find

L1
(
[0, 1] \ E

)
=
∞∑
n=1

∑
aj 6=7

L1
(
(0.a1 . . . an−17, 0.a1 . . . an−18]

)
=
∞∑
n=1

9n−1 · 1

10n
=

1

10

∞∑
k=0

(
9

10

)k
= 1,

which implies L1(E) = 0.

Exercise 5.3.
Let f : Rn → Rn be Lipschitz with constant L. Let A ⊂ Rn and 0 ≤ s < +∞. Show that

Hs(f(A)) ≤ LsHs(A).

Solution: Let δ > 0 fix. Consider any covering of A of the form

A ⊂
⋃
k∈N

Brk(xk), rk < δ.

Due to Lipschitz continuity, for all x ∈ Brk(xk) we have that f(x) ∈ BLrk(f(xk)), which implies

f(A) ⊂
⋃
k∈N

f(Brk(xk)) ⊂
⋃
k∈N

BLrk(f(xk)).

As a result, we obtain

Hsδ(A) = inf
{ ∞∑
k=1

rsk
∣∣ A ⊂ ⋃

k∈N
Brk(xk), rk < δ

}
≥ inf

{ ∞∑
k=1

rsk
∣∣ f(A) ⊂

⋃
k∈N

BLrk(f(xk)), rk < δ
}

=
1

Ls
inf
{ ∞∑
k=1

(Lrk)
s
∣∣ f(A) ⊂

⋃
k∈N

BLrk(f(xk)), Lrk < Lδ
}

=
1

Ls
HsLδ(f(A)),

and by letting δ → 0, we conclude the desired inequality.

Exercise 5.4.
Let C denote the Cantor set as defined in the lecture. Show that it holds

dimH(C) =
ln(2)

ln(3)
=: s,

and that 2−s−1 ≤ Hs(C) ≤ 2−s.
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Solution: Observe that dimH(C) = s follows immediately from the inequalities 2−s−1 ≤ Hs(C) ≤
2−s. Consequently, it suffices to estimate the Hs-measure of C.

By construction, we know

C =
⋂
k∈N

2k⋃
l=1

I
(k)
l ,

where I
(k)
l are closed intervals of length 3−k obtained by repeatedly removing the middle third of

each emerging subinterval. We thus cover C by 2k intervals slightly larger than the I
(k)
l , namely of

radius λ
2 · 3

−k with 2 > λ > 1, but having the same midpoint. This enables us to directly estimate
the Hausdorff measure by means of this covering:

Hs2·3−k(C) ≤
2k∑
l=1

(
λ

2
· 3−k

)s
= 2kλs2−s3−ks = 2kλs2−s2−k = 2−sλs,

where we used 3s = 2. Observe that by letting λ → 1, we obtain Hs
2·3−k(C) ≤ 2−s. As we can let

k go to ∞, this immediately yields Hs(C) ≤ 2−s.

Next, we want to show the other inequality. Let {Brk(xk)}k∈N be a covering of C by open balls. As
C is compact, we may assume without loss of generality that the covering consists of finitely many
balls B1 = Br1(x1), . . . , BN = BrN (xN ). For each j = 1, . . . , N , there exists a k ∈ N such that

3−k−1 ≤ 2rj ≤ 3−k,

which implies that Bj intersects at most one interval I
(k)
l for l = 1, . . . , 2k. For any m ≥ k, Bj

intersects at most 2m−k intervals of the form I
(m)
l by direct considerations. Observe

2m−k = 2m · 3−sk = 2m · 3s · 3−s(k+1) ≤ 2m · 3s · (2rj)s, (1)

by choice of k and s. Since we have a covering involving only finitely many balls, there is a m
large enough, such that 3−m−1 ≤ 2rj for all j = 1, . . . , N . Summing over all j the estimate (1) and
observing that the number of intervals intersected by the balls must precisely be 2m as any interval
will be intersected by at least one ball, we obtain

2m ≤
N∑
j=1

2m3s(2rj)
s = 2m3s2s

N∑
j=1

rsj .

Rearranging and cancelling yields

2−s−1 = 2−s3−s ≤
N∑
j=1

rsj ,

which is precisely the desired inequality due to the fact that the covering was arbitrary and the
definition of Hs.
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