Exercise 6.1.

For $s \geq 0$ and $\emptyset \neq A \subset \mathbb{R}^{n}$, we define

$$
\mathcal{H}_{\infty}^{s}(A):=\inf \left\{\sum_{k \in I} r_{k}^{s} \mid A \subset \bigcup_{k \in I} B\left(x_{k}, r_{k}\right), r_{k}>0\right\}
$$

where the set of indices I is at most countable. One can check that \mathcal{H}_{∞}^{s} is a measure. Prove that $\mathcal{H}_{\infty}^{1 / 2}$ is not Borel on \mathbb{R}.

Remark. Note that the definition of \mathcal{H}_{∞}^{s} coincides with Definition 1.8.1 in the Lecture Notes for $\delta=\infty$.

Solution: We show that the interval $[0,1]$ is not $\mathcal{H}_{\infty}^{1 / 2}$-measurable, from which follows that $\mathcal{H}_{\infty}^{1 / 2}$ is not Borel on \mathbb{R}.
First let us prove that $\mathcal{H}_{\infty}^{1 / 2}([a, b])=\left(\frac{b-a}{2}\right)^{1 / 2}$ for all $a<b$. Note that the interval $B\left(\frac{a+b}{2}, \frac{b-a}{2}+\varepsilon\right)$ covers $[a, b]$ for all $\varepsilon>0$. Therefore we have that $\mathcal{H}_{\infty}^{1 / 2}([a, b]) \leq\left(\frac{b-a}{2}+\varepsilon\right)^{1 / 2}$, which implies that $\mathcal{H}_{\infty}^{1 / 2}([a, b]) \leq\left(\frac{b-a}{2}\right)^{1 / 2}$ for arbitrariness of ε. On the other hand, given any finite or countable cover $\left\{B\left(x_{k}, r_{k}\right)\right\}_{k \in I}$ of $[a, b]$, the total length of the intervals of the covering should be at least $b-a$, namely $\sum_{k \in I} 2 r_{k} \geq b-a$. Hence, using that $\left(\sum_{k \in I} r_{k}^{1 / 2}\right)^{2} \geq \sum_{k \in I} r_{k}$, we get

$$
\sum_{k \in I} r_{k}^{1 / 2} \geq\left(\sum_{k \in I} r_{k}\right)^{1 / 2} \geq\left(\frac{b-a}{2}\right)^{1 / 2}
$$

Therefore we obtain that $\mathcal{H}_{\infty}^{1 / 2}([a, b])=\left(\frac{b-a}{2}\right)^{1 / 2}$ for all $a<b$. The same proof (with the same result) works for half-closed and open intervals.

As a result, we get

$$
\mathcal{H}_{\infty}^{1 / 2}([0,2])=1 \neq 2^{3 / 2}=\mathcal{H}_{\infty}^{1 / 2}([0,1])+\mathcal{H}_{\infty}^{1 / 2}((1,2])
$$

which proves that $[0,1]$ is not $\mathcal{H}_{\infty}^{1 / 2}$-measurable.

Exercise 6.2.

Prove the following claims.
(a) The Lebesgue measure \mathcal{L}^{n} is a Radon measure on \mathbb{R}^{n}.

Solution: In the lecture, we have already seen that the Lebesgue measure \mathcal{L}^{n} is Borel regular. Let $K \subset \mathbb{R}^{n}$ be compact. As K is bounded, for example $K \subset B_{R}(0)$, it obviously follows $\mathcal{L}^{n}(K) \leq$ $\mathcal{L}^{n}\left(B_{R}(0)\right)=\omega_{n} R^{n}<\infty$.
(b) The Hausdorff measure \mathcal{H}^{s} is not a Radon measure for $s<n$, but it is a Radon measure for $s \geq n$.
Solution: From the lecture, we know that \mathcal{H}^{s} is Borel regular for all $s>0$. It therefore suffices to check if $\mathcal{H}^{s}(K)<\infty$ for compact subsets $K \subset \mathbb{R}^{n}$. Since $\mathcal{L}^{n}(A)=C_{n} \mathcal{H}^{n}(A)$ for any measurable $A \subset \mathbb{R}^{n}$, where $C_{n}<\infty$ is a constant, it is immediately clear that $\mathcal{H}^{n}(K)<\infty$ for all compact K. By Lemma 1.8.5 in the Lecture Notes, it is obvious that for any compact $K \subset \mathbb{R}^{n}$ with positive Lebesgue measure, we have $\mathcal{H}^{s}(K)=0$ for $s>n$ and $\mathcal{H}^{s}(K)=\infty$ for $s<n$. This finishes the proof.
(c) If μ is a Radon measure and $A \subset \mathbb{R}^{n}$ is μ-measurable, then $\mu L A$ given by

$$
\left(\mu\llcorner A)(B):=\mu(A \cap B), \quad \forall B \subset \mathbb{R}^{n}\right.
$$

is a Radon measure as well.
Solution: We showed in Exercise 2.3 (a) that $\nu:=\mu\left\llcorner A\right.$ is a measure. For compact sets $K \subset \mathbb{R}^{n}$, it therefore holds

$$
\nu(K)=\mu(A \cap K) \leq \mu(K) \leq \infty
$$

because μ is a Radon measure by assumption. Moreover, by Exercise 2.3 (b), ν is a Borel measure. It remains to check whether ν is Borel regular. Let $B \subset \mathbb{R}^{n}$ and assume wlog $\mu(B)<\infty$ (otherwise consider $B \cap Q_{l}$ for a disjoint partition of $\mathbb{R}^{n}=\cup_{l \in \mathbb{N}} Q_{l}$ such that $\left.\mu\left(Q_{l}\right)<\infty\right)$. Choose C and D Borel sets such that $A \cap B \subset C$ and $B \backslash A \subset D$ as well as

$$
\mu(A \cap B)=\mu(C), \quad \mu(D)=\mu(B \backslash A) \leq \mu(B)<\infty
$$

Since $A \cap B \subset A \cap C \subset C$, we have

$$
\mu(A \cap B) \leq \mu(A \cap C) \leq \mu(C)=\mu(A \cap B)
$$

Therefore $\nu(C)=\mu(A \cap C)=\mu(A \cap B)=\nu(B)$. Moreover, since D is μ-measurable and $B \backslash A \subset$ $D \backslash A$, it follows the relation

$$
\nu(D)=\mu(D \cap A)=\mu(D)-\mu(D \backslash A) \leq \mu(D)-\mu(B \backslash A)=0 .
$$

Finally, define the Borel set $E:=C \cup D$ Borel and notice $B \subset E$ as well as

$$
\nu(B) \leq \nu(E) \leq \nu(C)+\nu(D)=\nu(B),
$$

which is the desired result.

Exercise 6.3.

Given any subset $A \subset \mathbb{R}^{n}$, show that $\operatorname{dim}_{\mathcal{H}}(A)=\sup \left\{t \geq 0 \mid \mathcal{H}^{t}(A)=+\infty\right\}$.

Solution: By Lemma 1.8 .5 in the Lecture Notes, we have that there exists $d \geq 0$ such that $\mathcal{H}^{s}(A)=\infty$ for all $s \in[0, d)$ and $\mathcal{H}^{s}(A)=0$ for all $s \in(d, \infty)$. In particular, by Definition 1.8.8 of Hausdorff dimension, we have that $\operatorname{dim}_{\mathcal{H}}(A)=\inf \left\{s \geq 0 \mid \mathcal{H}^{s}(A)=0\right\}=d$. On the other hand it is also clear that $\sup \left\{t \geq 0 \mid \mathcal{H}^{t}(A)=+\infty\right\}=d$, which implies the desired result.

Exercise 6.4.

Let $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ be a continuous injective curve. We define the arc length of γ as

$$
L(\gamma):=\sup \left\{\sum_{i=1}^{N} d\left(\gamma\left(t_{i-1}\right), \gamma\left(t_{i}\right)\right) \mid N \in \mathbb{N}, a \leq t_{0} \leq t_{1} \leq \ldots \leq t_{N} \leq b\right\}
$$

Show that $\mathcal{H}^{1}(\operatorname{Im}(\gamma))=\frac{1}{2} L(\gamma)$.

Solution: We first show that $\mathcal{H}^{1}(\operatorname{Im}(\gamma)) \leq \frac{1}{2} L(\gamma)$. If $L(\gamma)=\infty$, we are done, otherwise take $n \in \mathbb{N}$ and take a sequence $a=t_{0} \leq t_{1} \leq \ldots \leq t_{2^{n+1}}=b$. By choosing the sequence appropriately, we may assume

$$
L\left(\left.\gamma\right|_{\left[t_{k}, t_{k+1}\right]}\right)=\frac{1}{2} L(\gamma) \cdot 2^{-n}, \quad \forall k \in\left\{0, \ldots, 2^{n+1}-1\right\} .
$$

Let $\varepsilon>0$ and define $\delta_{n}:=\frac{1}{2}(L(\gamma)+2 \varepsilon) \cdot 2^{-n}$. Observe that

$$
\gamma\left(\left[t_{2 k}, t_{2 k+1}\right]\right) \cup \gamma\left(\left[t_{2 k+1}, t_{2 k+2}\right]\right) \subset B_{\delta_{n}}\left(\gamma\left(t_{2 k+1}\right)\right),
$$

which means that by taking all balls of radius δ_{n} around the $t_{2 k+1}$, we have a covering of γ. Therefore, by definition of the Hausdorff measure

$$
\mathcal{H}_{\delta_{n}}^{1}(\operatorname{Im}(\gamma)) \leq \sum_{k=1}^{2^{n}} \delta_{n}=2^{n} \delta_{n}=\frac{1}{2} L(\gamma)+\varepsilon,
$$

where the summation bounds are due to us taking 2^{n} balls to cover γ. This proves the first inequality by letting ε go to 0 .

Next, we show the converse inequality. If $\phi:[a, b] \rightarrow \mathbb{R}^{n}$ is a curve, we define

$$
\operatorname{diam}(\operatorname{Im}(\phi)):=\sup \{d(\phi(x), \phi(y)) \mid x, y \in[a, b]\}
$$

We want to show the following inequality

$$
\begin{equation*}
2 \cdot \mathcal{H}^{1}(\operatorname{Im}(\phi)) \geq \operatorname{diam}(\operatorname{Im}(\phi)) \tag{1}
\end{equation*}
$$

Before proving the inequality, let us show how to use it. Let $a=t_{0} \leq t_{1} \leq \ldots \leq t_{N}=b$ be a sequence of points in $[a, b]$ and define $U_{j}:=\operatorname{Im}\left(\left.\gamma\right|_{\left[t_{j-1}, t_{j}\right]}\right)$ for any $j=1, \ldots, N$. Observe that all U_{j} are pairwise disjoint up to single points which are \mathcal{H}^{1}-negligible. Therefore, we get that

$$
\mathcal{H}^{1}(\operatorname{Im}(\gamma))=\sum_{j=1}^{N} \mathcal{H}^{1}\left(U_{j}\right) .
$$

Using (1), this implies that

$$
d\left(\gamma\left(t_{j-1}\right), \gamma\left(t_{j}\right)\right) \leq \operatorname{diam}\left(\left.\gamma\right|_{\left[t_{j-1}, t_{j}\right]}\right)=\operatorname{diam}\left(U_{j}\right) \leq 2 \cdot \mathcal{H}^{1}\left(U_{j}\right) .
$$

Now, given any $\varepsilon>0$, we can assume that the partition $a=t_{0} \leq t_{1} \leq \ldots \leq t_{N}=b$ is such that $L(\gamma)-\varepsilon \leq \sum_{j=1}^{N} d\left(\gamma\left(t_{j-1}\right), \gamma\left(t_{j}\right)\right)$. Hence, summing the previous inequality over j, we obtain

$$
L(\gamma)-\varepsilon \leq \sum_{j=1}^{N} d\left(\gamma\left(t_{j-1}\right), \gamma\left(t_{j}\right)\right) \leq \sum_{j=1}^{N} 2 \cdot \mathcal{H}^{1}\left(U_{j}\right)=2 \cdot \mathcal{H}^{1}(\operatorname{Im}(\gamma)) .
$$

Letting ε go to 0 gives the desired inequality and thus proves the result.
It remains to prove (1). Let B_{1}, \ldots, B_{N} be a covering of the image of ϕ using balls of radii r_{1}, \ldots, r_{N} and consider $x, y \in \operatorname{Im}(\phi)$. Because ϕ is continuous, the image is connected and there exists a finite subfamily of balls $B_{j_{1}}, \ldots, B_{j_{k}}$ such that $x \in B_{j_{1}}, y \in B_{j_{k}}$ and $B_{j_{l}} \cap B_{j_{l+1}} \neq \emptyset$ for all l. Therefore,
we can choose points z_{1}, \ldots, z_{k-1}, such that $z_{l} \in B_{j_{l}} \cap B_{j_{l+1}}$ (for brevity we denote x, y by z_{0}, z_{k}) and we therefore see that

$$
d(x, y) \leq \sum_{l=0}^{k-1} d\left(z_{l}, z_{l+1}\right) \leq \sum_{l=0}^{k-1} \operatorname{diam}\left(B_{j_{l+1}}\right)=\sum_{l=0}^{k-1} 2 r_{j_{l+1}} \leq 2 \cdot \sum_{j=1}^{N} r_{j} .
$$

Choosing $x, y \in \operatorname{Im}(\phi)$ with distance equal to the diameter of the image and choosing appropriate coverings, we deduce from the definition of \mathcal{H}^{1} that

$$
\operatorname{diam}(\operatorname{Im}(\phi)) \leq 2 \cdot \mathcal{H}^{1}(\operatorname{Im}(\phi))
$$

Exercise 6.5.

Consider the continuous function $f:[0,1] \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}x \sin \frac{1}{x}, & x>0 \\ 0, & x=0\end{cases}
$$

(a) Show that the graph of f has infinite length as a curve, and therefore the set

$$
A:=\{(x, f(x)) \mid x \in[0,1]\}
$$

has $\mathcal{H}^{1}(A)=\infty$.
Hint: use Exercise 6.4 to relate the length with the \mathcal{H}^{1} measure.
Solution: Let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}, x \mapsto(x, f(x))$ be the continuous injective curve that parametrizes A. Consider the sequence $x_{k}=\frac{2}{(2 k+1) \pi} \in[0,1]$, so that $\sin \frac{1}{x_{k}}=\sin \left(k+\frac{1}{2}\right) \pi=(-1)^{k}$, and estimate the distance between two consecutive points in the curve:

$$
\begin{aligned}
d\left(\gamma\left(x_{k}\right), \gamma\left(x_{k+1}\right)\right) & =d\left(\left(x_{k}, x_{k} \sin \frac{1}{x_{k}}\right),\left(x_{k+1}, x_{k+1} \sin \frac{1}{x_{k+1}}\right)\right) \\
& \geq\left|x_{k} \sin \frac{1}{x_{k}}-x_{k+1} \sin \frac{1}{x_{k+1}}\right|=\left|x_{k}(-1)^{k}-x_{k+1} \sin (-1)^{k+1}\right| \\
& =\left|(-1)^{k}\left(x_{k}+x_{k+1}\right)\right|=x_{k}+x_{k+1}>x_{k}
\end{aligned}
$$

Therefore, for any $N>0$ we may use the parameters $0<x_{N}<x_{N-1}<\cdots<x_{1}<1$ in the supremum defining $L(\gamma)$, so that

$$
L(\gamma) \geq \sum_{k=1}^{N-1} d\left(\gamma\left(x_{k}\right), \gamma\left(x_{k+1}\right)\right) \geq \sum_{k=1}^{N-1} x_{k}=\sum_{k=1}^{N-1} \frac{2}{(2 k+1) \pi} .
$$

The right hand side behaves like the harmonic series and thus diverges as $N \rightarrow \infty$. Therefore $L(\gamma)=\infty$ and by Exercise 6.4, $\mathcal{H}^{1}(A)=\mathcal{H}^{1}(\operatorname{Im}(\gamma))=\frac{1}{2} L(\gamma)=\infty$.
(b) Show that $\mathcal{H}^{s}(A)=0$ if $s>1$.

Solution: Let $s>1$ and consider $\varepsilon>0$. The function $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ is smooth on $[\varepsilon, 1]$ and therefore is L_{ε}-Lipschitz for some constant L_{ε}. Thus, by exercise 5.3,

$$
\mathcal{H}^{s}(\gamma([\varepsilon, 1])) \leq L_{\varepsilon}^{s} \mathcal{H}^{s}([\varepsilon, 1]) .
$$

However, since $\operatorname{dim}_{\mathcal{H}}([\varepsilon, 1])=1$ (because $\left.\mathcal{H}^{1}([\varepsilon, 1]) \in(0, \infty)\right)$, it follows that $\mathcal{H}^{s}([\varepsilon, 1])=0$ for $s>1$ and thus $\mathcal{H}^{s}(\gamma([\varepsilon, 1]))=0$.
Finally, writing $A=\gamma([0,1])=\{(0,0)\} \cup \bigcup_{k=1}^{\infty} \gamma\left(\left[\frac{1}{k}, 1\right]\right)$ and using the subadditivity of \mathcal{H}^{s} we get that $\mathcal{H}^{s}(A)=0$.
Remark. A more explicit solution can be given by covering A by small balls and using directly the definition of the Hausdorff measure.
(c) Conclude that $\operatorname{dim}_{\mathcal{H}}(A)=1$.

Solution: The fact that $\mathcal{H}^{1}(A)=\infty$ implies that $\operatorname{dim}_{\mathcal{H}}(A) \geq 1$, and the fact that $\mathcal{H}^{s}(A)=0$ for any $s>1$ implies that $\operatorname{dim}_{\mathcal{H}}(A) \leq s$ for any $s>1$. Therefore it must be $\operatorname{dim}_{\mathcal{H}}(A)=1$.

