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Exercise 6.1.
For s ≥ 0 and ∅ 6= A ⊂ Rn, we define

Hs
∞(A) := inf

{∑
k∈I

rsk | A ⊂
⋃
k∈I

B(xk, rk), rk > 0

}
,

where the set of indices I is at most countable. One can check that Hs
∞ is a measure. Prove

that H1/2
∞ is not Borel on R.

Remark. Note that the definition of Hs
∞ coincides with Definition 1.8.1 in the Lecture Notes

for δ =∞.

Solution: We show that the interval [0, 1] is not H1/2
∞ -measurable, from which follows that H1/2

∞
is not Borel on R.

First let us prove that H1/2
∞ ([a, b]) = ( b−a2 )1/2 for all a < b. Note that the interval B(a+b2 , b−a2 + ε)

covers [a, b] for all ε > 0. Therefore we have that H1/2
∞ ([a, b]) ≤

(
b−a
2 + ε

)1/2
, which implies that

H1/2
∞ ([a, b]) ≤

(
b−a
2

)1/2
for arbitrariness of ε. On the other hand, given any finite or countable cover

{B(xk, rk)}k∈I of [a, b], the total length of the intervals of the covering should be at least b − a,

namely
∑

k∈I 2rk ≥ b− a. Hence, using that (
∑

k∈I r
1/2
k )2 ≥

∑
k∈I rk, we get

∑
k∈I

r
1/2
k ≥

(∑
k∈I

rk

)1/2

≥
(
b− a

2

)1/2

.

Therefore we obtain that H1/2
∞ ([a, b]) = ( b−a2 )1/2 for all a < b. The same proof (with the same

result) works for half-closed and open intervals.

As a result, we get
H1/2
∞ ([0, 2]) = 1 6= 23/2 = H1/2

∞ ([0, 1]) +H1/2
∞ ((1, 2]),

which proves that [0, 1] is not H1/2
∞ -measurable.

Exercise 6.2.
Prove the following claims.

(a) The Lebesgue measure Ln is a Radon measure on Rn.

Solution: In the lecture, we have already seen that the Lebesgue measure Ln is Borel regular. Let
K ⊂ Rn be compact. As K is bounded, for example K ⊂ BR(0), it obviously follows Ln(K) ≤
Ln(BR(0)) = ωnR

n <∞.

(b) The Hausdorff measure Hs is not a Radon measure for s < n, but it is a Radon measure
for s ≥ n.

Solution: From the lecture, we know that Hs is Borel regular for all s > 0. It therefore suffices
to check if Hs(K) <∞ for compact subsets K ⊂ Rn. Since Ln(A) = CnHn(A) for any measurable
A ⊂ Rn, where Cn <∞ is a constant, it is immediately clear that Hn(K) <∞ for all compact K.
By Lemma 1.8.5 in the Lecture Notes, it is obvious that for any compact K ⊂ Rn with positive
Lebesgue measure, we have Hs(K) = 0 for s > n and Hs(K) = ∞ for s < n. This finishes the
proof.
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(c) If µ is a Radon measure and A ⊂ Rn is µ-measurable, then µ A given by

(µ A)(B) := µ(A ∩B), ∀ B ⊂ Rn

is a Radon measure as well.

Solution: We showed in Exercise 2.3 (a) that ν := µ A is a measure. For compact sets K ⊂ Rn,
it therefore holds

ν(K) = µ(A ∩K) ≤ µ(K) ≤ ∞

because µ is a Radon measure by assumption. Moreover, by Exercise 2.3 (b), ν is a Borel measure.

It remains to check whether ν is Borel regular. Let B ⊂ Rn and assume wlog µ(B) <∞ (otherwise
consider B ∩ Ql for a disjoint partition of Rn = ∪l∈NQl such that µ(Ql) < ∞). Choose C and D
Borel sets such that A ∩B ⊂ C and B\A ⊂ D as well as

µ(A ∩B) = µ(C), µ(D) = µ(B\A) ≤ µ(B) <∞.

Since A ∩B ⊂ A ∩ C ⊂ C, we have

µ(A ∩B) ≤ µ(A ∩ C) ≤ µ(C) = µ(A ∩B).

Therefore ν(C) = µ(A ∩ C) = µ(A ∩ B) = ν(B). Moreover, since D is µ-measurable and B \ A ⊂
D \A, it follows the relation

ν(D) = µ(D ∩A) = µ(D)− µ(D\A) ≤ µ(D)− µ(B\A) = 0.

Finally, define the Borel set E := C ∪D Borel and notice B ⊂ E as well as

ν(B) ≤ ν(E) ≤ ν(C) + ν(D) = ν(B),

which is the desired result.

Exercise 6.3.
Given any subset A ⊂ Rn, show that dimH(A) = sup{t ≥ 0 | Ht(A) = +∞}.

Solution: By Lemma 1.8.5 in the Lecture Notes, we have that there exists d ≥ 0 such that
Hs(A) =∞ for all s ∈ [0, d) and Hs(A) = 0 for all s ∈ (d,∞). In particular, by Definition 1.8.8 of
Hausdorff dimension, we have that dimH(A) = inf{s ≥ 0 | Hs(A) = 0} = d. On the other hand it
is also clear that sup{t ≥ 0 | Ht(A) = +∞} = d, which implies the desired result.

Exercise 6.4.
Let γ : [a, b]→ Rn be a continuous injective curve. We define the arc length of γ as

L(γ) := sup

{
N∑
i=1

d(γ(ti−1), γ(ti)) | N ∈ N, a ≤ t0 ≤ t1 ≤ . . . ≤ tN ≤ b

}
.

Show that H1(Im(γ)) = 1
2
L(γ).
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Solution: We first show that H1(Im(γ)) ≤ 1
2L(γ). If L(γ) =∞, we are done, otherwise take n ∈ N

and take a sequence a = t0 ≤ t1 ≤ . . . ≤ t2n+1 = b. By choosing the sequence appropriately, we
may assume

L(γ|[tk,tk+1]) =
1

2
L(γ) · 2−n, ∀k ∈ {0, . . . , 2n+1 − 1}.

Let ε > 0 and define δn := 1
2(L(γ) + 2ε) · 2−n. Observe that

γ([t2k, t2k+1]) ∪ γ([t2k+1, t2k+2]) ⊂ Bδn(γ(t2k+1)),

which means that by taking all balls of radius δn around the t2k+1, we have a covering of γ.
Therefore, by definition of the Hausdorff measure

H1
δn(Im(γ)) ≤

2n∑
k=1

δn = 2nδn =
1

2
L(γ) + ε,

where the summation bounds are due to us taking 2n balls to cover γ. This proves the first
inequality by letting ε go to 0.

Next, we show the converse inequality. If φ : [a, b]→ Rn is a curve, we define

diam(Im(φ)) := sup{d(φ(x), φ(y)) | x, y ∈ [a, b]}.

We want to show the following inequality

2 · H1(Im(φ)) ≥ diam(Im(φ)) (1)

Before proving the inequality, let us show how to use it. Let a = t0 ≤ t1 ≤ . . . ≤ tN = b be a
sequence of points in [a, b] and define Uj := Im(γ|[tj−1,tj ]) for any j = 1, . . . , N . Observe that all Uj
are pairwise disjoint up to single points which are H1-negligible. Therefore, we get that

H1(Im(γ)) =
N∑
j=1

H1(Uj).

Using (1), this implies that

d(γ(tj−1), γ(tj)) ≤ diam(γ|[tj−1,tj ]) = diam(Uj) ≤ 2 · H1(Uj).

Now, given any ε > 0, we can assume that the partition a = t0 ≤ t1 ≤ . . . ≤ tN = b is such that
L(γ)− ε ≤

∑N
j=1 d(γ(tj−1), γ(tj)). Hence, summing the previous inequality over j, we obtain

L(γ)− ε ≤
N∑
j=1

d(γ(tj−1), γ(tj)) ≤
N∑
j=1

2 · H1(Uj) = 2 · H1(Im(γ)).

Letting ε go to 0 gives the desired inequality and thus proves the result.

It remains to prove (1). Let B1, . . . , BN be a covering of the image of φ using balls of radii r1, . . . , rN
and consider x, y ∈ Im(φ). Because φ is continuous, the image is connected and there exists a finite
subfamily of balls Bj1 , . . . , Bjk such that x ∈ Bj1 , y ∈ Bjk and Bjl ∩ Bjl+1

6= ∅ for all l. Therefore,
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we can choose points z1, . . . , zk−1, such that zl ∈ Bjl ∩ Bjl+1
(for brevity we denote x, y by z0, zk)

and we therefore see that

d(x, y) ≤
k−1∑
l=0

d(zl, zl+1) ≤
k−1∑
l=0

diam(Bjl+1
) =

k−1∑
l=0

2rjl+1
≤ 2 ·

N∑
j=1

rj .

Choosing x, y ∈ Im(φ) with distance equal to the diameter of the image and choosing appropriate
coverings, we deduce from the definition of H1 that

diam(Im(φ)) ≤ 2 · H1(Im(φ)).

Exercise 6.5.
Consider the continuous function f : [0, 1]→ R given by

f(x) =

{
x sin 1

x
, x > 0

0, x = 0
.

(a) Show that the graph of f has infinite length as a curve, and therefore the set

A := {(x, f(x)) | x ∈ [0, 1]}

has H1(A) =∞.

Hint: use Exercise 6.4 to relate the length with the H1 measure.

Solution: Let γ : [0, 1]→ R2, x 7→ (x, f(x)) be the continuous injective curve that parametrizes A.
Consider the sequence xk = 2

(2k+1)π ∈ [0, 1], so that sin 1
xk

= sin
(
k + 1

2

)
π = (−1)k, and estimate

the distance between two consecutive points in the curve:

d(γ(xk), γ(xk+1)) = d

((
xk, xk sin

1

xk

)
,

(
xk+1, xk+1 sin

1

xk+1

))
≥
∣∣∣∣xk sin

1

xk
− xk+1 sin

1

xk+1

∣∣∣∣ =
∣∣∣xk(−1)k − xk+1 sin(−1)k+1

∣∣∣
=
∣∣∣(−1)k(xk + xk+1)

∣∣∣ = xk + xk+1 > xk.

Therefore, for any N > 0 we may use the parameters 0 < xN < xN−1 < · · · < x1 < 1 in the
supremum defining L(γ), so that

L(γ) ≥
N−1∑
k=1

d(γ(xk), γ(xk+1)) ≥
N−1∑
k=1

xk =

N−1∑
k=1

2

(2k + 1)π
.

The right hand side behaves like the harmonic series and thus diverges as N → ∞. Therefore
L(γ) =∞ and by Exercise 6.4, H1(A) = H1(Im(γ)) = 1

2L(γ) =∞.

(b) Show that Hs(A) = 0 if s > 1.
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Solution: Let s > 1 and consider ε > 0. The function γ : [0, 1] → R2 is smooth on [ε, 1] and
therefore is Lε-Lipschitz for some constant Lε. Thus, by exercise 5.3,

Hs(γ([ε, 1])) ≤ LsεHs([ε, 1]).

However, since dimH([ε, 1]) = 1 (because H1([ε, 1]) ∈ (0,∞)), it follows that Hs([ε, 1]) = 0 for
s > 1 and thus Hs(γ([ε, 1])) = 0.

Finally, writing A = γ([0, 1]) = {(0, 0)} ∪
⋃∞
k=1 γ

([
1
k , 1
])

and using the subadditivity of Hs we get
that Hs(A) = 0.

Remark. A more explicit solution can be given by covering A by small balls and using directly
the definition of the Hausdorff measure.

(c) Conclude that dimH(A) = 1.

Solution: The fact that H1(A) = ∞ implies that dimH(A) ≥ 1, and the fact that Hs(A) = 0 for
any s > 1 implies that dimH(A) ≤ s for any s > 1. Therefore it must be dimH(A) = 1.
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