Exercise 8.1.

Prove Littlewood's first principle: Let μ be a Radon measure on \mathbb{R}^{n} and $E \subseteq \mathbb{R}^{n}$ a μ^{-} measurable set with $\mu(E)<\infty$. Then for every $\varepsilon>0$ there exists an elementary set F such that $\mu(E \triangle F)<\varepsilon$.

Solution: Since E is μ-measurable and μ is a Radon measure, given $\varepsilon>0$ there exists an open set $U \supseteq E$ such that $\mu(U \backslash E)<\varepsilon / 2$. By using the standard dyadic decomposition of \mathbb{R}^{n}, we can write U as a union of countably many cubes Q_{1}, Q_{2}, \ldots. Since all of them are μ-measurable because μ is Borel, it holds that

$$
\mu(U)=\sum_{i=1}^{\infty} \mu\left(Q_{i}\right) .
$$

Since $\mu(E)<\infty$, also U has finite measure and therefore the sum converges. Thus we can take k large enough so that

$$
\sum_{i=k+1}^{\infty} \mu\left(Q_{i}\right)<\frac{\varepsilon}{2}
$$

and define $F:=Q_{1} \cup \cdots \cup Q_{k}$. Thus we have that

$$
\mu(E \backslash F) \leq \mu(U \backslash F)=\mu\left(\bigcup_{i=k+1}^{\infty} Q_{i}\right)<\frac{\varepsilon}{2}
$$

On the other hand,

$$
\mu(F \backslash E) \leq \mu(U \backslash E)<\frac{\varepsilon}{2} .
$$

Altogether this implies that $\mu(E \triangle F)=\mu(E \backslash F)+\mu(F \backslash E)<\varepsilon$.

Exercise 8.2.

Let $f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be \mathcal{L}^{n}-measurable functions, for $k \in \mathbb{N}$. Assume that

$$
\mathcal{L}^{n}\left(\left\{x \in \mathbb{R}^{n}| | f_{k}(x)-f_{k+1}(x) \mid>2^{-k}\right\}\right)<2^{-k}
$$

for all $k \in \mathbb{N}$. Show that the limit $\lim _{k \rightarrow \infty} f_{k}(x)$ exists almost everywhere.
Solution: Define $A_{k}=\left\{x \in \mathbb{R}^{n}| | f_{k}(x)-f_{k+1}(x) \mid \leq 2^{-k}\right\}$. By assumption, we have $\mathcal{L}^{n}\left(A_{k}^{c}\right)<2^{-k}$. Let $B_{l}:=\cap_{k \geq l} A_{k}$, then $B_{l+1} \supset B_{l}$ and equivalently $B_{l+1}^{c} \subset B_{l}^{c}$. Since

$$
\mathcal{L}^{n}\left(B_{l}^{c}\right) \leq \sum_{k \geq l} \mathcal{L}^{n}\left(A_{k}^{c}\right)<\sum_{k \geq l} 2^{-k}=2^{-l+1}
$$

(in particular $\mathcal{L}^{n}\left(B_{1}^{c}\right) \leq 1$), it follows

$$
\begin{equation*}
\mathcal{L}^{n}\left(\left(\bigcup_{l \in \mathbb{N}} B_{l}\right)^{c}\right)=\mathcal{L}^{n}\left(\bigcap_{l \in \mathbb{N}} B_{l}^{c}\right)=\lim _{l \rightarrow \infty} \mathcal{L}^{n}\left(B_{l}^{c}\right) \leq \lim _{l \rightarrow \infty} 2^{-l+1}=0 \tag{1}
\end{equation*}
$$

For $x \in B_{l}$ and $l<m<n \in \mathbb{N}$, it holds by the triangle inequality:

$$
\left|f_{m}(x)-f_{n}(x)\right| \leq \sum_{k=m}^{n-1}\left|f_{k}(x)-f_{k+1}(x)\right| \leq \sum_{k=m}^{n-1} 2^{-k} \leq 2^{-m+1}
$$

Hence, for every $x \in B_{l}, f_{k}(x)$ is a Cauchy sequence and consequently, the limit $\lim _{k \rightarrow \infty} f_{k}(x)$ exists. Because of (1), $\cup_{l \in \mathbb{N}} B_{l}$ is almost everywhere and therefore $\lim _{k \rightarrow \infty} f_{k}(x)$ exists for almost all $x \in \mathbb{R}^{n}$.

Exercise 8.3.

Let μ be a measure on \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ be μ-measurable. Let $f: \Omega \rightarrow \overline{\mathbb{R}}$ be a finite, μ^{-} measurable function, and $\left(f_{k}\right)_{k \in \mathbb{N}}$ a sequence of μ-measurable functions $f_{k}: \Omega \rightarrow \overline{\mathbb{R}}$ with the following property: Every subsequence $\left(f_{k_{j}}\right)_{j \in \mathbb{N}}$ contains a subsequence that converges to f in measure μ.
(a) Show that the whole sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ converges to f in measure μ.

Solution: Suppose the opposite was true. Then there exist $\varepsilon>0, \delta>0$ and a subsequence $\left\{f_{k_{j}}\right\}_{j \in \mathbb{N}}$, such that $\mu\left(\left\{x\left|\left|f(x)-f_{k_{j}}(x)\right|>\varepsilon\right\}\right)>\delta\right.$ for all $j \in \mathbb{N}$. This subsequence cannot contain another subsequence converging in measure μ. Therefore, $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ converges in measure.
(b) Show that the analogous statement from (a) is not true, if we assume only pointwise convergence μ-almost everywhere.
Solution: A counterexample is provided by the sequence $f_{k}:[0,1) \rightarrow \mathbb{R}$ with $f_{k}=\chi_{\left.\left[k / 2^{n}-1,(k+1) / 2^{n}-1\right)\right)}$ for $2^{n} \leq k<2^{n+1}$. For any $x \in[0,1)$, the sequence $\left(f_{k}(x)\right)_{k \in \mathbb{N}}$ is not convergent.
Claim: Every subsequence of $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ possesses a \mathcal{L}^{1}-almost everywhere convergent subsequence.
Proof: Let $\left\{g_{j}\right\}_{j \in \mathbb{N}}=\left\{f_{k_{j}}\right\}_{j \in \mathbb{N}}$ be a subsequence of $\left\{f_{k}\right\}_{k \in \mathbb{N}}$. We inductively construct a sequence of intervals $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ satisfying the following conditions:

1. $\mathcal{L}^{1}\left(I_{n}\right)=2^{-n}$;
2. For any $n \in \mathbb{N}$, there is a subsequence $\left\{g_{j}^{(n)}\right\}_{j \in \mathbb{N}}$ of $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ such that $\operatorname{supp}\left(g_{j}^{(n)}\right) \subset I_{n}$;
3. $\left\{g_{j}^{(n+1)}\right\}_{j \in \mathbb{N}}$ is a subsequence of $\left\{g_{j}^{(n)}\right\}_{j \in \mathbb{N}}$.

For $n=1$, we choose the intervals $\left[0, \frac{1}{2}\right)$ and $\left[\frac{1}{2}, 1\right)$. For any g_{j} we either have supp $g_{j} \subset\left[0, \frac{1}{2}\right)$ or $\operatorname{supp} g_{j} \subset\left[\frac{1}{2}, 1\right)$. As a result, at least one of the intervals contains infinitely many of the supports of g_{j}. We denote this interval by I_{1}. The g_{j} 's with support in I_{1} form the subsequence $\left\{g_{j}^{(1)}\right\}_{j \in \mathbb{N}}$. Let $\left\{g_{j}^{(n)}\right\}_{j \in \mathbb{N}}$ be a sequence with the properties above. We define the intervals $K_{l}=\left[l \cdot 2^{-(n+1)},(l+\right.$ 1) $\left.\cdot 2^{-(n+1)}\right)$ for $l=0, \ldots, 2^{n+1}-1$. For all $g_{j}^{(n)}$ with j sufficiently large, there is $l=l(j)$ such that $\operatorname{supp}\left(g_{j}^{(n)}\right) \subset K_{l}$. As a result, at least one of the K_{l}, which we denote by I_{n+1}, contains the support of infinitely many $g_{j}^{(n)}$. These $g_{j}^{(n)}$ form the subsequence $\left\{g_{j}^{(n+1)}\right\}_{j \in \mathbb{N}}$.
Using the construction above, we take a diagonal sequence $h_{m}:=g_{m}^{(m)}$. Note that $\left\{h_{m}\right\}_{m \in \mathbb{N}}$ is a subsequence of $\left\{f_{k_{j}}\right\}_{j \in \mathbb{N}}$. Let $N:=\bigcap_{n \in \mathbb{N}} I_{n}$. Because of upper continuity of the measure, we have $\mathcal{L}^{1}(N)=\lim _{n \rightarrow \infty} \mathcal{L}^{1}\left(I_{n}\right)=0$.
Now let $x \notin N$. Then there is a $n=n(x)$, such that $x \notin I_{n(x)}$. Consequently, $h_{m}(x)=0$ for all $m>n(x)$. So h_{m} converges pointwise \mathcal{L}^{1}-almost everywhere to zero.

Exercise 8.4.

Counterexample to $\varepsilon=0$ in Lusin's Theorem: Find an example of a \mathcal{L}^{1}-measurable function
$f:[0,1] \rightarrow \mathbb{R}$ such that for every \mathcal{L}^{1}-measurable set $M \subset[0,1]$ with $\mathcal{L}^{1}(M)=1$, the restriction $\left.f\right|_{M}: M \rightarrow \mathbb{R}$ is discontinuous in all but finitely many points of M.
Hint: You may use that there exists a Lebesgue measurable subset $A \subset[0,1]$ such that

$$
\mathcal{L}^{1}(U \cap A) \cdot \mathcal{L}^{1}\left(U \cap A^{c}\right)>0
$$

for all nonempty open subsets $U \subset[0,1]$. Such a set A can be constructed using the Cantor set (see Remark 1.6.2).

Solution: Let $f=\chi_{A}$ where $A \subset[0,1]$ is as in the hint. Moreover, let $M \subset[0,1]$ as described above. We show that $\left.f\right|_{M}$ is discontinuous in every point except for $\{0,1\}$. Let $x \in M \backslash\{0,1\}$ and choose sequences $a_{n} \leq x \leq b_{n}$ that converge monotonically to x. Observe that, for all $I_{n}:=\left(a_{n}, b_{n}\right)$, it holds

$$
\mathcal{L}^{1}\left(I_{n} \cap A\right) \cdot \mathcal{L}^{1}\left(I_{n} \cap A^{c}\right)>0 .
$$

Using that $\mathcal{L}^{1}([0,1] \backslash M)=0$ as well as Caratheodory's characterisation of measurability, we get $\mathcal{L}^{1}\left(I_{n} \cap A\right)=\mathcal{L}^{1}\left(I_{n} \cap A \cap M\right)+\mathcal{L}^{1}\left(\left(I_{n} \cap A\right) \backslash M\right)=\mathcal{L}^{1}\left(I_{n} \cap A \cap M\right)$ and analogously $\mathcal{L}^{1}\left(I_{n} \cap A^{c}\right)=$ $\mathcal{L}^{1}\left(I_{n} \cap A^{c} \cap M\right)$. Therefore, the previous inequality can be read as

$$
\mathcal{L}^{1}\left(I_{n} \cap A \cap M\right) \cdot \mathcal{L}^{1}\left(I_{n} \cap A^{c} \cap M\right)>0 .
$$

This implies that there exists $x_{n}, y_{n} \in I_{n}$ such that

$$
x_{n} \in I_{n} \cap A \cap M, \quad y_{n} \in I_{n} \cap A^{c} \cap M,
$$

therefore $f\left(x_{n}\right)=1, f\left(y_{n}\right)=0$. Observe that $x_{n} \rightarrow x$ and similarily $y_{n} \rightarrow x$. This provides the desired contradiction to continuity.

Exercise 8.5.

Counterexample to $\delta=0$ in Egoroff's Theorem: Find an example of a sequence of \mathcal{L}^{1} measurable functions $f_{k}:[0,1] \rightarrow \overline{\mathbb{R}}$ that converges pointwise almost everywhere to a \mathcal{L}^{1} measurable (\mathcal{L}^{1}-almost everywhere finite) function $f:[0,1] \rightarrow \overline{\mathbb{R}}$, but for every compact $F \subset[0,1]$ with $\mathcal{L}^{1}(F)=\mathcal{L}^{1}([0,1])$ the convergence on F is not uniform.

Solution: Note that, if $F \subset[0,1]$ is compact with $\mathcal{L}^{1}(F)=\mathcal{L}^{1}([0,1])$, then $F=[0,1]$. Now, if we consider the functions $f_{k}:[0,1] \rightarrow \mathbb{R}$ given by $f_{k}(x)=x^{k}$, we have that f_{k} converge pointwise to the function $f \equiv 0$ on $\left[0,1\right.$) (in particular \mathcal{L}^{1}-almost everywhere), but they easily do not converge uniformly to f on $[0,1]$ (for example because $f_{k}(1)=1 \nrightarrow f(1)=0$).

Exercise 8.6.

Let μ be a measure on $\mathbb{R}^{n}, \Omega \subseteq \mathbb{R}^{n}$ a μ-measurable set and $f: \Omega \rightarrow[0, \infty]$ a μ-measurable function. Consider the sets $A_{j} \subseteq \Omega$ from Theorem 2.2.6 of the Lecture Notes, defined so that the sequence of functions

$$
f_{k}=\sum_{j=1}^{k} \frac{1}{j} \chi_{A_{j}}
$$

converges pointwise to f. Show that if f is bounded, then f_{k} converge uniformly to f, that is,

$$
\sup _{x \in \Omega}\left|f(x)-f_{k}(x)\right| \longrightarrow 0 \text { as } k \rightarrow \infty
$$

Solution: Suppose that $f(x) \leq M$ for every $x \in \Omega$ and let $k_{0}>2$ be large enough so that

$$
\sum_{j=1}^{k_{0}} \frac{1}{j}>M
$$

Given $x \in \Omega$ and $k \geq k_{0}$, let j be the largest integer $\leq k$ such that $x \notin A_{j}$. Notice that such j must exist because otherwise we would have $f(x) \geq \sum_{j=1}^{k} \frac{1}{j}>M$. In this case $f_{j}(x)=f_{j-1}(x)$ and moreover, by definition of A_{j},

$$
\begin{equation*}
f(x)<f_{j-1}(x)+\frac{1}{j}=f_{j}(x)+\frac{1}{j}, \tag{2}
\end{equation*}
$$

but $x \in A_{\ell}$ for every $j<\ell \leq k$, which implies that

$$
\begin{equation*}
f_{j}(x)+\sum_{\ell=j+1}^{k} \frac{1}{\ell} \leq f(x) \tag{3}
\end{equation*}
$$

Putting together (22) and (3) we get that

$$
\sum_{\ell=j+1}^{k} \frac{1}{\ell}<\frac{1}{j}
$$

It is easy to check that such inequality cannot hold if $k-j \geq 3$, for example because of the easy inequality

$$
\frac{1}{j}=\frac{1}{2 j}+\frac{1}{3 j}+\frac{1}{6 j}<\frac{1}{j+1}+\frac{1}{j+2}+\frac{1}{j+3}
$$

which is true for $j \geq 1$. Thus $j \geq k-2$. Now (2) and the monotonicity of f_{k} imply

$$
0 \leq f(x)-f_{k}(x) \leq f(x)-f_{j}(x)<\frac{1}{j} \leq \frac{1}{k-2},
$$

from which the uniform convergence follows.

