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Exercise 8.1.

Prove Littlewood’s first principle: Let p be a Radon measure on R® and £ C R" a u-
measurable set with p(E) < co. Then for every e > 0 there exists an elementary set F' such
that u(EAF) < e.

Solution: Since F is py-measurable and u is a Radon measure, given € > 0 there exists an open set
U D FE such that u(U \ F) < £/2. By using the standard dyadic decomposition of R", we can write
U as a union of countably many cubes Q1,Q2, . ... Since all of them are p-measurable because u is
Borel, it holds that

w(U) = 3" (@),
i=1

Since p(E) < 0o, also U has finite measure and therefore the sum converges. Thus we can take k

large enough so that
o0

> @) <

i=k+1
and define ' := Q1 U---U Q. Thus we have that

)

DN ™

M(E\F)SN(U\F):M< U Qi) <%-

i=k+1
On the other hand,
WF\B) < u(U\ B) < 5.
Altogether this implies that u(EAF) = u(E\ F) + u(F\ E) < e. O

Exercise 8.2.
Let fi: R™ — R be L£"-measurable functions, for £ € N. Assume that

L'{z € R" | |fu(z) = fen(z)] > 27} <27

for all £ € N. Show that the limit klim fr(x) exists almost everywhere.
—00

Solution: Define Ay, = {z € R" | | fx(2)— fi41(2)| < 27%}. By assumption, we have L7(Af) < 27%.
Let Bj := Ng> Ay, then Biyy O Bj and equivalently By, C Bj. Since

LY(Bf) <Y LMAf) <> 27k =271
k>l E>1

(in particular £"(Bf) < 1), it follows

e ((Un) ) =er(181) = o = 7 -0 g

leN leN
For x € B; and | < m < n € N, it holds by the triangle inequality:

n—1

n—1
@) = Ja@)| < S 1ul@) — (@) < 3 27k <2,
k=m

k=m
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Hence, for every x € By, fr(x) is a Cauchy sequence and consequently, the limit limy_, .o fx(x)
exists. Because of , UienDB is almost everywhere and therefore limg_,o, fx(x) exists for almost
all z € R". O

Exercise 8.3.
Let 1 be a measure on R” and Q C R” be p-measurable. Let f: Q — R be a finite, p-
measurable function, and (fi)ren a sequence of y-measurable functions fi: © — R with the
following property: Every subsequence (fy;);jen contains a subsequence that converges to f
in measure .

(a) Show that the whole sequence (fx)reny converges to f in measure p.

Solution: Suppose the opposite was true. Then there exist ¢ > 0, § > 0 and a subsequence
{fk; }jen, such that p({z | |f(z) — fi;(z)| > €}) > 0 for all j € N. This subsequence cannot contain
another subsequence converging in measure p. Therefore, { f}ren converges in measure. O

(b) Show that the analogous statement from (a) is not true, if we assume only pointwise
convergence p-almost everywhere.

Solution: A counterexample is provided by the sequence f, : [0,1) — R with fx = X[k/27—1,(k+1)/27—1))
for 2" < k < 2"FL. For any z € [0, 1), the sequence (fx(z))ken is not convergent.
Claim: Every subsequence of {fj }ren possesses a £!-almost everywhere convergent subsequence.

Proof: Let {g;}jen = {fk, }jen be a subsequence of { fx}ren. We inductively construct a sequence
of intervals {I, },en satisfying the following conditions:

1. LY(I,) = 27™;
2. For any n € N, there is a subsequence {g§n) }jen of {g;}jen such that supp(g](-n)) C Ip;

3. {g](-n+1)}j€N is a subsequence of {g](-n) }ien.
For n = 1, we choose the intervals [0, %) and [%, 1). For any g; we either have supp g; C [0, %) or
supp g; C [%, 1). As a result, at least one of the intervals contains infinitely many of the supports

of gj. We denote this interval by I1. The g;’s with support in I; form the subsequence {gj(-l)} jEN-

Let {g§n) }jen be a sequence with the properties above. We define the intervals K; = [I- 2~ (n+1) (14

1)-2=0+D) for [ = 0,...,2"*1 — 1. For all gj(n) with j sufficiently large, there is I = [(j) such that
supp(g](n)) C K;. As aresult, at least one of the K;, which we denote by I,,11, contains the support

(n)

of infinitely many gj" . These g](.n) form the subsequence {g§n+1)}jeN.

Using the construction above, we take a diagonal sequence h,, := g7(nm). Note that {hm }men is a
subsequence of { fi, }jen. Let N := (1, oy In. Because of upper continuity of the measure, we have
LY(N) =lim, o L£1(1,,) = 0.

Now let x ¢ N. Then there is a n = n(z), such that z ¢ I,,(,). Consequently, h,,(x) = 0 for all
m > n(z). So hy, converges pointwise £!-almost everywhere to zero. O

Exercise 8.4.
Counterexample to € = 0 in Lusin’s Theorem: Find an example of a £!-measurable function
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f :[0,1] — R such that for every L!-measurable set M C [0,1] with £Y(M) = 1, the
restriction f|y; : M — R is discontinuous in all but finitely many points of M.

Hint: You may use that there exists a Lebesgue measurable subset A C [0, 1] such that
LYUNA)-LYUNAY) >0

for all nonempty open subsets U C [0, 1]. Such a set A can be constructed using the Cantor
set (see Remark 1.6.2).

Solution: Let f = x4 where A C [0,1] is as in the hint. Moreover, let M C [0,1] as described
above. We show that f|ys is discontinuous in every point except for {0,1}. Let x € M \ {0,1} and
choose sequences a,, < x < b, that converge monotonically to . Observe that, for all I,, :== (an, by),
it holds
LY I, NA) - LN, N A% > 0.

Using that £1([0,1] \ M) = 0 as well as Caratheodory’s characterisation of measurability, we get
LYI,NA) =LY I,nANM)+ LY (I, NnA)\ M) = LY(I,NAN M) and analogously £!(I, N A®) =
LY (I, N AN M). Therefore, the previous inequality can be read as

LY I, NnANM)- LY, AN M) > 0.
This implies that there exists z,,,y, € I, such that
€, NANM, y,el,NA°NM,

therefore f(x,) = 1, f(y,) = 0. Observe that z,, — z and similarily y, — x. This provides the
desired contradiction to continuity. O

Exercise 8.5.

Counterexample to § = 0 in Egoroff’s Theorem: Find an example of a sequence of £!-
measurable functions f; : [0,1] — R that converges pointwise almost everywhere to a £!-
measurable (£!-almost everywhere finite) function f : [0,1] — R, but for every compact
F C [0,1] with £'(F) = £(]0,1]) the convergence on F is not uniform.

Solution: Note that, if F' C [0,1] is compact with £!(F) = £1([0, 1]), then F = [0, 1]. Now, if we
consider the functions f : [0,1] — R given by f.(2z) = 2*, we have that f; converge pointwise to
the function f = 0 on [0,1) (in particular £!-almost everywhere), but they easily do not converge
uniformly to f on [0, 1] (for example because fx(1) =1/ f(1) =0). O

Exercise 8.6.

Let p be a measure on R™,  C R™ a p-measurable set and f : 2 — [0, 00] a p-measurable
function. Consider the sets A; C € from Theorem 2.2.6 of the Lecture Notes, defined so
that the sequence of functions
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converges pointwise to f. Show that if f is bounded, then f; converge uniformly to f, that
is,

sup |f(z) — fe(x)| — 0 as k — oc.

e

Solution: Suppose that f(x) < M for every z € Q and let kg > 2 be large enough so that

ko 1
Y ->M
=17

Given € Q and k > ko, let j be the largest integer < k such that x ¢ A;. Notice that such j
must exist because otherwise we would have f(z) > Z?:l% > M. In this case fj(z) = fj—1(z)
and moreover, by definition of A;,

1 1
fl) < fima(z) + i fi@) + 7 (2)
but x € Ay for every j < £ < k, which implies that
"
file)+ D 5 < flw) (3)

It is easy to check that such inequality cannot hold if K — 57 > 3, for example because of the easy

inequality . . . . . . .

=t = < + - + -
j 25 3j 65 g+1 34+2 j+3
which is true for j > 1. Thus j > k — 2. Now and the monotonicity of fj imply

—
[u—

0< f(z) = file) < J(2) - filo) < < < —.

<

from which the uniform convergence follows. O
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