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Exercise 9.1.
In this exercise, we prove the linearity, monotonicity and well-definedness of the integral
of simple functions, see Definitions 3.1.2 and 3.1.3 in the Lecture Notes. These results are
essential to derive the corresponding properties of the general integral.

Remark. Throughout the exercise, we assume that all simple functions introduced are at
least µ-integrable.

(a) Let f, g be two µ-measurable simple functions with values {an}n∈N and {bn}n∈N in R (see
Definition 3.1.1. in the Lecture Notes). Show that there exist µ-measurable, disjoint sets
(An)n∈N, (Bn)n∈N, such that

f =
∑
n∈N

anχAn , g =
∑
n∈N

bnχBn ,

and prove that the sets and values can be chosen in such a way that An = Bn holds for all
n ∈ N.
Solution: Given f , define An := f−1({an}) which is a µ-measurable subset. Then it is obvious
from the fact that {an}n∈N is the set of values of f that

f =
∑
n∈N

anχAn .

Similarily for g with Bn := g−1({bn}). Lastly, let us define Cn,m := An ∩ Bm for all n,m ∈ N
and observe that there are countably many sets Cn,m and they are all µ-measurable. Defining

cfn,m := an and cgn,m := bm, we obtain the desired decompositions for f and g with the common
collection of pairwise disjoint subsets Cn,m.

(b) Assume that f =
∑

n∈N anχAn , where {an}n∈N ⊂ R is a sequence of values (not necessarily
different from each other) and {An}n∈N is a sequence of pairwise disjoint, µ-measurable
subsets. Prove that ∫

fdµ =
∑
n∈N

anµ(An).

Solution: Let us denote by {cm}m∈N the values assumed by f . Observe that, due to the disjoint-
ness of the An’s, we have

f−1({cm}) :=
⋃

n∈N: an=cm

An.

Therefore, by Definitions 3.1.2 and 3.1.3, we know:∫
fdµ =

∑
m∈N

cmµ
(
f−1({cm})

)
=

∑
m∈N

cmµ
( ⋃

n: an=cm

An

)
=

∑
m∈N

cm
∑

n: an=cm

µ(An)

=
∑
m∈N

∑
n: an=cm

anµ(An) =
∑
n∈N

anµ(An),

where we used the pairwise disjointness and the fact that every An can only be associated with
exactly one of the cm.
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(c) Let f, g be µ-measurable simple functions such that f ≤ g µ-almost everywhere. Then
it holds ∫

fdµ ≤
∫

gdµ.

Solution: First of all let us assume that f ≤ g pointwise everywhere. From the part (a), we know
that we can find µ-measurable subsets Cn and sequences an, bn, such that

f =
∑
n

anχCn , g =
∑
n

bnχCn .

By f ≤ g, we know that an ≤ bn due to the disjointness of the Cn. By part (b), this implies∫
fdµ =

∑
n∈N

anµ(Cn) ≤
∑
n∈N

bnµ(Cn) =

∫
gdµ,

which is the desired result.

Finally note that it follows easily from parts (a) and (b) that, if f̃ = f µ-almost everywhere, then∫
fdµ =

∫
f̃dµ. This proves the full result, when f ≤ g µ-almost everywhere.

(d) Assume f, g are µ-summable simple functions (see Definition 3.1.8) and a, b ∈ R. Show
that af + bg is a µ-summable simple function and∫

(af + bg)dµ = a

∫
fdµ+ b

∫
gdµ.

Solution: Let once more an, bn and the sets Cn as in part (a). Then observe that

af + bg =
∑
n∈N

(aan + bbn)χCn ,

which immediately implies that af + bg is a simple function due to the disjointness of the sets Cn.
Applying part (b) we get∫

(af + bg)dµ =
∑
n∈N

(aan + bbn)µ(Cn) = a
∑
n∈N

anµ(Cn) + b
∑
n∈N

bnµ(Cn)

= a

∫
fdµ+ b

∫
gdµ,

which is precisely the desired result.

(e) Let f be a µ-integrable simple function. Prove that∫
fdµ =

∫
fdµ =

∫
fdµ,

where the last integral is understood in the sense of integrals for simple functions, see Defi-
nitions 3.1.2 and 3.1.3 in the Lecture Notes.
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Solution: From direct comparison and the fact that f is a simple function, we immediately con-
clude ∫

fdµ ≤
∫

fdµ ≤
∫
fdµ,

due to taking infima and suprema respectively. Therefore, it suffices to check∫
fdµ ≤

∫
fdµ.

For this, let g, h be simple functions such that g ≤ f ≤ h µ-almost everywhere and observe that by
part (c) we have ∫

g dµ ≤
∫

h dµ.

Taking the supremum over all g and the infimum over all h, the desired result follows.

Exercise 9.2.

(a) Let {fk}k∈N be a sequence of µ-measurable functions on a µ-measurable set Ω ⊂ Rn.
Show that the series

∑∞
k=1 fk(x) converges µ-almost everywhere, if

∞∑
k=1

∫
Ω

|fk|dµ < ∞.

Solution: Let us define

gk :=
k∑

j=1

|fj |

and it obviously holds gk ≤ gk+1 for all k ≥ 1. Using monotone convergence of integrals, we see∫
Ω

∞∑
j=1

|fj | dµ =

∫
Ω

lim
k→∞

gk dµ = lim
k→∞

∫
Ω
gk dµ = lim

k→∞

∫
Ω

k∑
j=1

|fj | dµ

= lim
k→∞

k∑
j=1

∫
Ω
|fj | dµ =

∞∑
j=1

∫
Ω
|fj | dµ.

Since
∫
Ω

∑∞
j=1 |fj | dµ =

∑∞
j=1

∫
Ω |fj | dµ < ∞, it holds

∑∞
j=1 |fj | < ∞ µ-almost everywhere.

(b) Let {rk}k∈N be an ordering ofQ∩[0, 1] and (ak)k∈N ⊂ R be such that
∑∞

k=1 ak is absolutely
convergent. Show that

∑∞
k=1 ak|x−rk|−1/2 is absolutely convergent for almost every x ∈ [0, 1]

(with respect to the Lebesgue measure).

Solution: We apply part (a) to the functions fk(x) = ak|x− rk|−1/2 with µ equal to the Lebesgue
measure. It holds ∫ 1

0
|fk(x)|dx = |ak|

∫ 1

rk

1√
x− rk

dx+

∫ rk

0

1√
rk − x

dx

= 2|ak|(
√
1− rk +

√
rk) ≤ 2

√
2|ak| .
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Therefore,
∑∞

k=1

∫ 1
0 |fk|dx ≤ 2

√
2
∑∞

k=1|ak| < ∞ by assumption and with part (a) of the exercise,
the result follows.

Exercise 9.3.
Find an example of a continuous bounded function f : [0,∞) → R such that limx→∞ f(x) = 0
and ∫ ∞

0

|f(x)|pdx = ∞ ,

for all p > 0.

Solution: The function f : [0,∞) → R defined as

f(x) =
1

log(2 + x)

is continuous, bounded by f(x) ≤ log(2)−1 and limx→∞ f(x) = 0. Since log(2 + x) ≤ p(2 + x)
1
p for

all p > 0, we get ∣∣∣∣ 1

log(2 + x)

∣∣∣∣p ≥ 1

pp(2 + x)
,

which is not integrable over [0,∞).

Exercise 9.4.
Let f, g : Ω → R be µ-summable functions and assume that∫

A

fdµ ≤
∫
A

gdµ

for all µ-measurable subsets A ⊂ Ω. Show that f ≤ g µ-almost everywhere. Moreover,
conclude that, if ∫

A

fdµ =

∫
A

gdµ

for all µ-measurable subsets A ⊂ Ω, then f = g µ-almost everywhere.

Solution: Define A := {g < f} and An := {g + 1
n ≤ f} for all n ∈ N. Notice that

⋃
n∈NAn = A

and that An, A are measurable. Therefore, we find:

1

n
µ(An) +

∫
An

gdµ =

∫
An

(
g +

1

n

)
dµ ≤

∫
An

fdµ ≤
∫
An

gdµ.

Comparing the LHS and the RHS, we obtain µ(An) = 0. Therefore, by continuity of the measure,
we get µ(A) = 0.

The second part of the exercise follows trivially from the first part.

Exercise 9.5.
Let fn : R → R be Lebesgue measurable functions. Find examples for the following state-
ments.
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(a) fn → 0 uniformly, but not
∫
|fn|dx → 0.

Solution: The functions fn = 1
n · χ[0,n] are easily an example.

(b) fn → 0 pointwise and in measure, but neither fn → 0 uniformly nor
∫
|fn|dx → 0.

Solution: The functions fn = n · χ[ 1
n
, 2
n
] are an example. All properties are trivially true except

for convergence in measure. For this, for all ε > 0, notice that

L1(|fn − 0| > ε) ≤ 1

n
→ 0.

(c) fn → 0 pointwise, but not in measure.

Solution: The functions fn = χ[n,n+1] are an example. They clearly not converge in measure as
the limit would necessarily have to agree with the pointwise limit, since appropriate subsequences
of a sequence converging in measure converge pointwise to the same limit. However it is obvious
that this is not the case here.

Exercise 9.6.
Let f : Ω → [0,∞] be µ-measurable. Prove the following facts:

(a) If
∫
Ω
fdµ = 0, then f = 0 µ-almost everywhere.

Solution: By Exercise 9.4, since 0 ≤ f , it is enough to prove that for every µ-measurable set
A ⊆ Ω,

0 =

∫
A
0 dµ =

∫
A
fdµ.

However this follows from the monotonicity of the integral:

0 ≤
∫
A
fdµ ≤

∫
Ω
fdµ = 0.

(b) If
∫
Ω
fdµ < +∞, then f < +∞ µ-almost everywhere.

Solution: Define for each n ∈ N the µ-measurable sets An = {x ∈ Ω | f(x) > n} and notice
that A := {x ∈ Ω | f(x) = +∞} =

⋂∞
n=1An. Set C :=

∫
Ω fdµ < +∞. Then, again using the

monotonicity of the integral,

nµ(An) =

∫
An

ndµ ≤
∫
An

fdµ ≤
∫
Ω
fdµ = C,

so that µ(An) ≤ C/n < +∞ for all n. It follows that µ(A) = 0.
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