Exercise 10.1.

Let $f: \Omega \rightarrow \overline{\mathbb{R}}$ be μ-summable and $\Omega_{1} \subseteq \Omega$ be μ-measurable. Show that $f_{1}:=\left.f\right|_{\Omega_{1}}$ and $f \chi_{\Omega_{1}}$ are μ-summable on Ω_{1} and Ω respectively, and that

$$
\int_{\Omega_{1}} f_{1} d \mu=\int_{\Omega} f \chi_{\Omega_{1}} d \mu
$$

Solution: Let us first show that the statement holds when f is simple: in this case, also f_{1} is simple and

$$
\begin{aligned}
\int_{\Omega_{1}} f_{1} d \mu & =\sum_{a \in \overline{\mathbb{R}}} a \mu\left(\left\{x \in \Omega_{1} \mid f_{1}(x)=a\right\}\right) \\
& =\sum_{a \in \overline{\mathbb{R}}} a \mu\left(\{x \in \Omega \mid f(x)=a\} \cap \Omega_{1}\right) \\
& =\sum_{a \in \overline{\mathbb{R}}} a \mu\left(\left\{x \in \Omega \mid f(x) \chi_{\Omega_{1}}(x)=a\right\}\right) \\
& =\int_{\Omega} f \chi_{\Omega_{1}} d \mu .
\end{aligned}
$$

In the third equality we have used that, for $a \neq 0, f(x) \chi_{\Omega_{1}}(x)=a$ if and only if $f(x)=a$ and $x \in \Omega_{1}$.
We now take a general f and start by showing that f_{1} is μ-summable: since $\int_{\Omega}|f|<\infty$, there exists a simple function $F: \Omega \rightarrow \overline{\mathbb{R}}$ such that $|f| \leq F$ and $\int_{\Omega} F<\infty$. Then the simple function $F_{1} \geq f_{1}$ can be used to control $\int_{\Omega_{1}} f_{1} d \mu \leq \int_{\Omega_{1}} F_{1} d \mu=\int_{\Omega} F \chi_{\Omega_{1}} d \mu \leq \int_{\Omega} F d \mu<\infty$.
It is also clear that $f \chi_{\Omega_{1}}$ is μ-summable, since $\int_{\Omega}\left|f \chi_{\Omega_{1}}\right| d \mu \leq \int_{\Omega}|f|<\infty$. It follows that both functions are μ-integrable. To show the equality of the integrals, let g be a simple function on Ω_{1} such that $g \leq f_{1} \mu$-a.e. in Ω_{1} and h a simple function on Ω such that $h \geq f \chi_{\Omega_{1}} \mu$-a.e. in Ω. Then $h \geq f \mu$-a.e. in Ω_{1}, so that $h_{1} \geq f_{1} \geq g$. Moreover $h \geq 0 \mu$-a.e. outside of Ω_{1}, so $h \geq h \chi_{\Omega_{1}}$. Thus,

$$
\int_{\Omega_{1}} g d \mu \leq \int_{\Omega_{1}} h_{1} d \mu=\int_{\Omega} h \chi_{\Omega_{1}} d \mu \leq \int_{\Omega} h d \mu .
$$

This implies, after taking the supremum over g and the infimum over h :

$$
\int_{\Omega_{1}} f_{1} d \mu=\underline{\int_{\Omega_{1}}} f_{1} d \mu \leq \int_{\Omega} f \chi_{\Omega_{1}} d \mu=\int_{\Omega} f \chi_{\Omega_{1}} d \mu .
$$

The proof of the converse inequality is entirely analogous.

Exercise 10.2.

Show that if $f: \Omega \rightarrow \overline{\mathbb{R}}$ is a μ-summable function and $\Omega_{1} \subseteq \Omega$ has $\mu\left(\Omega_{1}\right)=0$, then

$$
\int_{\Omega_{1}} f d \mu=0
$$

Solution: Observe that the function $f \chi_{\Omega_{1}}$ is zero μ-almost everywhere. Therefore we can apply Exercise 10.1 and get that

$$
\int_{\Omega_{1}} f d \mu=\int_{\Omega} f \chi_{\Omega_{1}} d \mu=0
$$

Exercise 10.3.

By applying Lebesgue's Theorem to the counting measure on \mathbb{N}, show that

$$
\lim _{n \rightarrow \infty} n \sum_{i=1}^{\infty} \sin \left(\frac{2^{-i}}{n}\right)=1
$$

Solution: Let μ be the counting measure on \mathbb{N}. Define $f_{n}: \mathbb{N} \rightarrow \mathbb{R}$ as $f_{n}(i)=n \sin \left(2^{-i} / n\right)$. Note that $f_{n}(i) \leq 2^{-i}$ and that the function $i \mapsto 2^{-i}$ is μ-summable. Hence we can apply Lebesgue's Theorem and obtain

$$
\lim _{n \rightarrow \infty} n \sum_{i=1}^{\infty} \sin \left(\frac{2^{-i}}{n}\right)=\lim _{n \rightarrow \infty} \int_{\mathbb{N}} f_{n} d \mu=\int_{\mathbb{N}} \lim _{n \rightarrow \infty} f_{n} d \mu=\sum_{i=1}^{\infty} 2^{-i}=1 .
$$

Exercise 10.4.

Let λ be the Lebesgue measure on \mathbb{R} and f a nonnegative summable function on (\mathbb{R}, λ). Show that the following equality of Lebesgue integrals holds:

$$
\int_{\mathbb{R}} f d \lambda=\int_{0}^{+\infty} \lambda(\{f>s\}) d s
$$

Hint: In a first instance prove the equality when f is a simple function; in this case, make a picture of f and of the function $s \mapsto \lambda(\{f>s\})$ and interpret the two sides according to the definition of the Lebesgue integral.

Solution: Let f be simple and write $f=\sum_{i=1}^{\infty} a_{i} \chi_{A_{i}}$ with $\left\{A_{i}\right\}$ pairwise disjoint. Then, although $\lambda(\{f>s\})$ is not necessarily a simple function of s, it can be written as an infinite sum of characteristic functions with weights as follows: first note that

$$
\{f>s\}=\left\{\sum_{i=1}^{\infty} a_{i} \chi_{A_{i}}>s\right\}=\bigcup_{i: a_{i}>s} A_{i}
$$

and that this union is disjoint, so that

$$
\lambda(\{f>s\})=\sum_{i: a_{i}>s} \lambda\left(A_{i}\right)=\sum_{i=1}^{\infty} \lambda\left(A_{i}\right) \chi_{\left[0, a_{i}\right)}(s)
$$

for $s \geq 0$. Now we use Beppo Levi's monotone convergence theorem to interchange the sum and the integral and deduce the equality:

$$
\begin{aligned}
\int_{0}^{+\infty} \lambda(\{f>s\}) d s & =\int_{0}^{+\infty} \sum_{i=1}^{\infty} \lambda\left(A_{i}\right) \chi_{\left[0, a_{i}\right)}(s) d s \\
& =\sum_{i=1}^{\infty} \lambda\left(A_{i}\right) \int_{0}^{+\infty} \chi_{\left[0, a_{i}\right)}(s) d s=\sum_{i=1}^{\infty} a_{i} \lambda\left(A_{i}\right)=\int_{\mathbb{R}} f d \lambda
\end{aligned}
$$

Next, we consider an arbitrary nonnegative summable function f. If $g \leq f$ is a simple function, we observe that $s \mapsto \lambda(\{g>s\})$ is again a simple function which is less than or equal to $s \mapsto \lambda(\{f>s\})$. Analogous observations hold for simple functions $g \geq f$.
Since f is summable, we have:

$$
\int f=\bar{\int} f=\underline{\int} f
$$

and therefore, $s \mapsto \lambda(\{f>s\})$ is also summable (by directly considering simple functions as in the definition) and we have

$$
\int_{0}^{+\infty} \lambda(\{f>s\}) d s=\int f
$$

Remark: The function $s \mapsto \lambda(\{f>s\})$ is monotonically decreasing in s, resulting in the following inequality being trivial:

$$
s \leq t \Rightarrow\{f>s\} \supset\{f>t\} \Rightarrow \lambda(\{f>s\}) \geq \lambda(\{f>t\}) .
$$

Consequently, the function $s \mapsto \lambda(\{f>s\})$ is Riemann integrable.
The equation proven in this exercise could be taken as the definition of the Lebesgue integral, if the integral on the right hand side is thought as a Riemann integral.

Exercise 10.5.

For all $n \in \mathbb{N}$, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be defined by:

$$
f_{n}(x)=\frac{n \sqrt{x}}{1+n^{2} x^{2}} .
$$

Prove that:
(a) $f_{n}(x) \leq \frac{1}{\sqrt{x}}$ on $(0,1]$ for all $n \geq 1$.

Solution: We would like to show that $\frac{n \sqrt{x}}{1+n^{2} x^{2}} \leq \frac{1}{\sqrt{x}}$. This is equivalent to

$$
n x \leq 1+n^{2} x^{2} \Leftrightarrow(1-n x)^{2}+n x \geq 0
$$

which is true for all $x \in[0,1]$.
(b) $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0$.

Solution: Let us start with the following observation

$$
\frac{n \sqrt{x}}{1+n^{2} x^{2}} \leq \frac{n \sqrt{x}}{n^{2} x^{2}} \leq \frac{1}{n x \sqrt{x}} .
$$

Therefore, it holds

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0
$$

pointwise on $(0,1]$.
By (a), we know that the sequence f_{n} is always smaller than $g=\frac{1}{\sqrt{x}}$. Since g is Lebesgue integrable on $[0,1]$, we deduce by Lebegue's dominated convergence theorem and the pointwise convergence to 0 that:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0
$$

Exercise 10.6.

Let $\Omega \subseteq \mathbb{R}^{n}$ be μ-measurable with $\mu(\Omega)<+\infty$ and let $\left\{f_{j}\right\}$ be a sequence of μ-summable $\overline{\mathbb{R}}$-valued functions such that $f_{j} \rightarrow f$ uniformly in Ω. Show that f is μ-summable and

$$
\lim _{j \rightarrow \infty} \int_{\Omega} f_{j} d \mu=\int_{\Omega} f d \mu
$$

Solution: First note that, since $f=\lim _{j \rightarrow \infty} f_{j}=\liminf _{j \rightarrow \infty} f_{j}=\limsup _{j \rightarrow \infty} f_{j}, f$ is μ-measurable. Moreover, uniform convergence implies that if j is greater than some j_{0}, then $\left|f(x)-f_{j}(x)\right| \leq 1$ for every $x \in \Omega$, thus $|f(x)| \leq\left|f_{j}(x)\right|+1$ and therefore

$$
\int_{\Omega}|f| d \mu \leq \int_{\Omega}\left|f_{j}\right|+1 d \mu \leq \int_{\Omega}\left|f_{j}\right| d \mu+\mu(\Omega)<\infty
$$

as f_{j} is μ-summable, which shows that f is also μ-summable. Finally, for $j \geq j_{0}$ we also have that $\left|f_{j}(x)\right| \leq|f(x)|+1=: g(x)$. Arguing as before and using again the fact that $\mu(\Omega)<\infty$, we see that g is μ-summable, so we can conclude thanks to Lebesgue's dominated convergence theorem.

