Exercise 10.1.

Let $f : \Omega \to \overline{\mathbb{R}}$ be μ -summable and $\Omega_1 \subseteq \Omega$ be μ -measurable. Show that $f_1 := f|_{\Omega_1}$ and $f\chi_{\Omega_1}$ are μ -summable on Ω_1 and Ω respectively, and that

$$\int_{\Omega_1} f_1 \, d\mu = \int_{\Omega} f \, \chi_{\Omega_1} d\mu$$

Solution: Let us first show that the statement holds when f is simple: in this case, also f_1 is simple and

$$\int_{\Omega_1} f_1 d\mu = \sum_{a \in \overline{\mathbb{R}}} a\mu(\{x \in \Omega_1 \mid f_1(x) = a\})$$
$$= \sum_{a \in \overline{\mathbb{R}}} a\mu(\{x \in \Omega \mid f(x) = a\} \cap \Omega_1)$$
$$= \sum_{a \in \overline{\mathbb{R}}} a\mu(\{x \in \Omega \mid f(x)\chi_{\Omega_1}(x) = a\})$$
$$= \int_{\Omega} f\chi_{\Omega_1} d\mu.$$

In the third equality we have used that, for $a \neq 0$, $f(x)\chi_{\Omega_1}(x) = a$ if and only if f(x) = a and $x \in \Omega_1$.

We now take a general f and start by showing that f_1 is μ -summable: since $\int_{\Omega} |f| < \infty$, there exists a simple function $F: \Omega \to \overline{\mathbb{R}}$ such that $|f| \leq F$ and $\int_{\Omega} F < \infty$. Then the simple function $F_1 \geq f_1$ can be used to control $\int_{\Omega_1} f_1 d\mu \leq \int_{\Omega_1} F_1 d\mu = \int_{\Omega} F \chi_{\Omega_1} d\mu \leq \int_{\Omega} F d\mu < \infty$.

It is also clear that $f\chi_{\Omega_1}$ is μ -summable, since $\int_{\Omega} |f\chi_{\Omega_1}| d\mu \leq \int_{\Omega} |f| < \infty$. It follows that both functions are μ -integrable. To show the equality of the integrals, let g be a simple function on Ω_1 such that $g \leq f_1 \mu$ -a.e. in Ω_1 and h a simple function on Ω such that $h \geq f\chi_{\Omega_1} \mu$ -a.e. in Ω . Then $h \geq f \mu$ -a.e. in Ω_1 , so that $h_1 \geq f_1 \geq g$. Moreover $h \geq 0 \mu$ -a.e. outside of Ω_1 , so $h \geq h\chi_{\Omega_1}$. Thus,

$$\int_{\Omega_1} g \, d\mu \le \int_{\Omega_1} h_1 \, d\mu = \int_{\Omega} h \chi_{\Omega_1} \, d\mu \le \int_{\Omega} h \, d\mu.$$

This implies, after taking the supremum over g and the infimum over h:

$$\int_{\Omega_1} f_1 \, d\mu = \underline{\int_{\Omega_1}} f_1 \, d\mu \le \overline{\int_{\Omega}} f \chi_{\Omega_1} \, d\mu = \int_{\Omega} f \chi_{\Omega_1} \, d\mu.$$

The proof of the converse inequality is entirely analogous.

Exercise 10.2.

Show that if $f: \Omega \to \overline{\mathbb{R}}$ is a μ -summable function and $\Omega_1 \subseteq \Omega$ has $\mu(\Omega_1) = 0$, then

$$\int_{\Omega_1} f \, d\mu = 0.$$

1 / 4

Solution: Observe that the function $f\chi_{\Omega_1}$ is zero μ -almost everywhere. Therefore we can apply Exercise 10.1 and get that

$$\int_{\Omega_1} f \, d\mu = \int_{\Omega} f \chi_{\Omega_1} \, d\mu = 0. \qquad \Box$$

Exercise 10.3.

By applying Lebesgue's Theorem to the counting measure on \mathbb{N} , show that

$$\lim_{n \to \infty} n \sum_{i=1}^{\infty} \sin\left(\frac{2^{-i}}{n}\right) = 1.$$

Solution: Let μ be the counting measure on \mathbb{N} . Define $f_n \colon \mathbb{N} \to \mathbb{R}$ as $f_n(i) = n \sin(2^{-i}/n)$. Note that $f_n(i) \leq 2^{-i}$ and that the function $i \mapsto 2^{-i}$ is μ -summable. Hence we can apply Lebesgue's Theorem and obtain

$$\lim_{n \to \infty} n \sum_{i=1}^{\infty} \sin\left(\frac{2^{-i}}{n}\right) = \lim_{n \to \infty} \int_{\mathbb{N}} f_n d\mu = \int_{\mathbb{N}} \lim_{n \to \infty} f_n d\mu = \sum_{i=1}^{\infty} 2^{-i} = 1.$$

Exercise 10.4.

Let λ be the Lebesgue measure on \mathbb{R} and f a nonnegative summable function on (\mathbb{R}, λ) . Show that the following equality of Lebesgue integrals holds:

$$\int_{\mathbb{R}} f d\lambda = \int_0^{+\infty} \lambda(\{f > s\}) ds.$$

Hint: In a first instance prove the equality when f is a simple function; in this case, make a picture of f and of the function $s \mapsto \lambda(\{f > s\})$ and interpret the two sides according to the definition of the Lebesgue integral.

Solution: Let f be simple and write $f = \sum_{i=1}^{\infty} a_i \chi_{A_i}$ with $\{A_i\}$ pairwise disjoint. Then, although $\lambda(\{f > s\})$ is not necessarily a simple function of s, it can be written as an infinite sum of characteristic functions with weights as follows: first note that

$$\{f > s\} = \left\{\sum_{i=1}^{\infty} a_i \chi_{A_i} > s\right\} = \bigcup_{i:a_i > s} A_i$$

and that this union is disjoint, so that

$$\lambda(\{f > s\}) = \sum_{i:a_i > s} \lambda(A_i) = \sum_{i=1}^{\infty} \lambda(A_i) \chi_{[0,a_i)}(s)$$

for $s \ge 0$. Now we use Beppo Levi's monotone convergence theorem to interchange the sum and the integral and deduce the equality:

$$\int_0^{+\infty} \lambda(\{f > s\}) ds = \int_0^{+\infty} \sum_{i=1}^\infty \lambda(A_i) \chi_{[0,a_i)}(s) ds$$
$$= \sum_{i=1}^\infty \lambda(A_i) \int_0^{+\infty} \chi_{[0,a_i)}(s) ds = \sum_{i=1}^\infty a_i \lambda(A_i) = \int_{\mathbb{R}} f \, d\lambda.$$

Next, we consider an arbitrary nonnegative summable function f. If $g \leq f$ is a simple function, we observe that $s \mapsto \lambda(\{g > s\})$ is again a simple function which is less than or equal to $s \mapsto \lambda(\{f > s\})$. Analogous observations hold for simple functions $g \geq f$.

Since f is summable, we have:

$$\int f = \overline{\int} f = \underline{\int} f,$$

and therefore, $s \mapsto \lambda(\{f > s\})$ is also summable (by directly considering simple functions as in the definition) and we have

$$\int_0^{+\infty} \lambda(\{f > s\}) ds = \int f.$$

Remark: The function $s \mapsto \lambda(\{f > s\})$ is monotonically decreasing in s, resulting in the following inequality being trivial:

$$s \leq t \Rightarrow \{f > s\} \supset \{f > t\} \Rightarrow \lambda(\{f > s\}) \geq \lambda(\{f > t\})$$

Consequently, the function $s \mapsto \lambda(\{f > s\})$ is Riemann integrable.

The equation proven in this exercise could be taken as the definition of the Lebesgue integral, if the integral on the right hand side is thought as a Riemann integral.

Exercise 10.5.

For all $n \in \mathbb{N}$, let $f_n \colon [0,1] \to \mathbb{R}$ be defined by:

$$f_n(x) = \frac{n\sqrt{x}}{1+n^2x^2}.$$

Prove that:

(a) $f_n(x) \leq \frac{1}{\sqrt{x}}$ on (0, 1] for all $n \geq 1$.

Solution: We would like to show that $\frac{n\sqrt{x}}{1+n^2x^2} \leq \frac{1}{\sqrt{x}}$. This is equivalent to

$$nx \le 1 + n^2 x^2 \Leftrightarrow (1 - nx)^2 + nx \ge 0$$

which is true for all $x \in [0, 1]$.

(b)
$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0$$

Solution: Let us start with the following observation

$$\frac{n\sqrt{x}}{1+n^2x^2} \leq \frac{n\sqrt{x}}{n^2x^2} \leq \frac{1}{nx\sqrt{x}}.$$

Therefore, it holds

$$\lim_{n \to \infty} f_n(x) = 0$$

pointwise on (0, 1].

By (a), we know that the sequence f_n is always smaller than $g = \frac{1}{\sqrt{x}}$. Since g is Lebesgue integrable on [0, 1], we deduce by Lebegue's dominated convergence theorem and the pointwise convergence to 0 that:

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0.$$

Exercise 10.6.

Let $\Omega \subseteq \mathbb{R}^n$ be μ -measurable with $\mu(\Omega) < +\infty$ and let $\{f_j\}$ be a sequence of μ -summable $\overline{\mathbb{R}}$ -valued functions such that $f_j \to f$ uniformly in Ω . Show that f is μ -summable and

$$\lim_{j \to \infty} \int_{\Omega} f_j \, d\mu = \int_{\Omega} f \, d\mu.$$

Solution: First note that, since $f = \lim_{j \to \infty} f_j = \lim_{j \to \infty} \inf_{j \to \infty} f_j = \lim_{j \to \infty} \sup_{j \to \infty} f_j$, f is μ -measurable. Moreover, uniform convergence implies that if j is greater than some j_0 , then $|f(x) - f_j(x)| \le 1$ for every $x \in \Omega$, thus $|f(x)| \le |f_j(x)| + 1$ and therefore

$$\int_{\Omega} |f| \, d\mu \leq \int_{\Omega} |f_j| + 1 \, d\mu \leq \int_{\Omega} |f_j| \, d\mu + \mu(\Omega) < \infty$$

as f_j is μ -summable, which shows that f is also μ -summable. Finally, for $j \ge j_0$ we also have that $|f_j(x)| \le |f(x)| + 1 =: g(x)$. Arguing as before and using again the fact that $\mu(\Omega) < \infty$, we see that g is μ -summable, so we can conclude thanks to Lebesgue's dominated convergence theorem. \Box