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Exercise 12.1.
The goal of this exercise is to compute the following Riemann integral:

o : a :
sin , sin
/ dr = lim dx.
0

X a— 00 0 a

(a) Show that the function @ : (0,00) — R,

(1) :/ e_msmxdx,
0

T

is well-defined and differentiable everywhere.

Solution: Finiteness is clear since |¥\ < 1. For the differentiability, given any sequence h; — 0,
we want to apply the dominated convergence theorem to commute the integral and the limit in the
following computation:

) — —(t+hj)z _
lim O(t+ hy) — (1) _ lim e i smxdx
Jj—00 hj Jj—oo Jo h] x
:/ lim " sinz dx
/OO d —tx sin /OO —tx L
= ( ) —e "sinx dx.
o dt 0

For that, it is enough to bound the integrands by a summable function. We can do this by using
the standard estimate |e* — 1| < el*/|u|, which follows from the mean value theorem. Thus
e—(t-i—hj)x — e gingy

|e*h7’x — 1‘ sinx

|hjl

—tz < elhilege—te |PRT) e /2| sinz| € L'(0, 00)

hj T x T

whenever |h;| < t/2, which happens for j large enough. Thus ®(t) is differentiable with derivative
oo
' (t) = / —e " sinx da. O
0

(b) Compute ®'(t) for ¢t € (0, 0).

Solution: Using the expression above we integrate twice by parts:
oo
' (t) = —/ e sinx de
0
oo

= [e_tx cos x] (o)o - / —te” ' cos x dx

0

o0
=-1 —i—t/ e " cosxdx
0

oo
=1+ [te_m sin 33]80 — / e sinxdr
0

= —1 -2/ (t)
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so that )
/ R ——
() = 1+t2 -

(¢) Compute ®(t) for t € (0,00).

Solution: We show first that ®(¢t) — 0 as ¢ — oo: this follows immediately from dominated
convergence, since |*2¥| < 1. Therefore the fundamental theorem of calculus yields

o(t) = — ( lim ®(s) — <I>(t)> . /:o o'(t) = /too LI g — arctan(t). O

S—+00 1+ 2

(d) Show that the convergence
“ sin > sin
/ e dx 2% / e dz
0 r 0 x

Hint: this part is technically more difficult. It is not true that faoo |e_t‘“i%‘ dx converges
to zero uniformly in ¢t as a — oo. Here one has to use the cancellations of the integral, for

example by seeing that
2(k+1)m sin
/ e dx
2

km x

is uniform in ¢ > 0.

o0

k=m
converges to zero as m — oo uniformly in ¢.

Solution: Given a > 0, let m € N be such that 27r(m — 1) < a < 2rm and write

00 : 2rm : o 2w (k+1) :
_,.sinx _,.sinzx _,.sinz
/ et dx S/ ‘e te dx + / et dx| .
a z a x k=—m 2k €
For the first term we have:
2mm :

_,.sinx 2mm — a 2

e Ul dr < I C <20
a T a a

On the other hand, for each term in the sum we use two changes of variables and write

/%(kﬂ) 2 SINT /7r otk i) SRR @)\ /7r o—t(2k+D)r+a) SN2k + D7 + 2)
2 0 0

rk ‘ x 2km +x 2k+1)r+a
™ o—t(2kmt) ™ o—t(2k+1)m+2)
= 1 S — d - i d
/0 T kv /0 Smx(2k+1)7r+a; v

7r e t(2km+x) e~ H(2k+1)m+a)
= i — d
/0 S ok 12 2k+ 1)+ g

e—t(2km) e~ t(2(k+1)m)
< — .
=T\ T2k T 2k +
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This is a telescoping series, so

°° _,ysinz 2 O [ e=t2km)  —t(2(k+1)7) o e—t@@mm) o
/ e dx - -
T
“ k

<= _
a t Z 2km 2(k+ 1)m
which tends to 0 as @ — oo uniformly in ¢. O
(e) Conclude that

Solution: Given € > 0, uniform convergence gives us some ag such that for a > aq,

a o :
LSinz _,.sinx
e~ dr — et dx
0 T 0 T

holds for every t > 0. Now fix a > ag and choose ¢ small enough so that a(1 — e ) < ¢/3 and
such that arctant < /3. The first condition implies:

(1)

a L3 a 3 a 3
/ sin T d — / eftxsmx dx' < / (1- eftx) | sin 7| dz < a(l — efm) < 57 (2)
0 X 0 X 0 X 3
while the second condition yields:
0o .

W_/ et 20T | = ‘z—q)(t) = arctant < = (3)

2 0 X 2 3
Finally putting together , and we see that

a
/ sinx dor — ™ <e
0 x 2

for a > ag as we wanted to show. ]

Exercise 12.2.
Let 1 < p < co. Show that if ¢ € LP(R") and ¢ is uniformly continuous, then
lim ¢(z)=0.

|z| =00

Solution: Suppose, by contradiction, that there is ¢ > 0 and a sequence {z}} with |xi| — oo
and |¢(zy)| > €. Then by uniform continuity, there is § > 0 such that for every =z € Bs(xy) we
have |p(z) — ¢(zr)| < /2, which implies that |¢(x)| > €/2. Since |zi| — oo, we can pass to
a subsequence {xy;} with |zg,| > |z, | + 20. This implies in particular that for any j # j’,
Tk, — ﬂfkj,| > 24, so that the balls Bjs(xy,) and B(g(l‘kj,) are disjoint. Thus we get the following
lower bound which shows that ¢ ¢ LP(R"):

/ ypdg;>z/ ]pdm>2/ ) dr = +oo O
B(;xk

Bs( Tk,
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Exercise 12.3.

Let u be a Radon measure on R" and €2 C R™ a u-measurable set.

(a) (Generalized Holder inequality) Consider 1 < pq,...,pr < oo such that % = Zle 1% < 1.
Show that, given functions f; € LP(Q, p) for i = 1,..., k, it holds [\, f; € L"(€, y1) and

k
<TT0flee
Lr i=1

Solution: We can suppose that all p; are finite, since it is easy to deal with p; = oo directly. We
will prove the statement by induction. For k = 1 there is nothing to prove. For the induction step

k—1 — k, we know that % - i = pp’ck—_f = Z;‘:ll p%.- By the induction hypothesis, we have that

PET
H;:ll fj € LPe=(Q, p) together with the estimate

k—1 k—1
11+ o= TTllzes -
=1 || g=l

Now we apply Holder’s inequality to the functions g1 = Hf;ll |f;|” and g2 = | fx|", with exponents

pf t— and P& respectively:
k k—1 R
[T < ([ T0mr (/ )"
2\ szl
k—1
= H fi 1l < TTIA s - 1 el o

Lpr;ck T .7:1
This yields || Hle filler < Hle Il fillri, as we wanted to show. O
(b) Prove that, if 4(Q) < 400, then L*(Q, ) C L™(Q, u) for all 1 <r < s < 4o00.
Solution: Fix 1 < r < s < 400 and define p = rs/(s — r), for which it holds % + i=1

If u(2) < +oo, then g = 1 € LP(Q,u), hence we can apply part (a) and obtain that "for all
fel™(Qu), f=f-1€L"(Q,u), which proves the desired inclusion.

(c) Show that the inclusion in part (b) is strict for all 1 < r < s < 400.
Solution: For all 1 < r < +o00, consider the function f: (0,1/2) — R given by

1 -1
fz) = <log2 () ml/r) .
x
Note that f € L" since

1/2 —r 1/2 -1
/ <log2 <1> xl/r> dzr = lim <log2r <1> x)
0 X e—0 J, X

1 12 1
lim [ _ 2r—1 } = _ 1oy "
e=0 [ (2r — 1) log™ " (1/x) |, (2r — 1) log” =" (2)
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On the other hand f ¢ L® for all s > r: in this case we can choose 0 < t < % — % and estimate
log? (%) < Cz~t with a constant C' > 0. Then follows

1 -1
2 - 1/"" > - ti'r‘
(log (ﬂf) ! > =c”

with s (t — %) < —1, which is not integrable. O

=

Exercise 12.4.

Let 1 be a Radon measure on R™ and 2 C R™ a p-measurable set with p(€2) < +o00. Consider
a function f: Q — R such that fg € L'(Q, ) for all g € LP(Q, u). Prove that f € L(Q, u)
for all ¢ € [1,p'), where p' = 1% is the conjugate of p.

Solution: First note that, taking g = 1 € LP(Q, ), we get that f € L'(Q, ). Hence we can

consider the function g = |f|'/? € LP(Q, i) and we get that |f|'T1/? € L1(, ). Therefore we can

choose g = | f|V/PT1/P* € LP(Q, 1) and get that | f|*+1/PH/P* € LHQ, p).

Repeating again the same argument by induction, we get that | f|P» € L'(2, u) for all n € N, where
n+1

P =1+ % + -+ ]% = 1_117/{)/; . In particular we have that f € LP»(§2, u) for all n € N, which

implies that f € LI(Q, u) for all 1 < g < p,, by Exercise 12.3 (b). Now note that p, — p’ asn — oo,
thus f € LI(Q, ) for all 1 < g < p/, as desired. O

Exercise 12.5.
Let u be a Radon measure on R™ and €2 C R™ a pu-measurable set.

(a) Show that any f € [,y LP(S2, p) With suppen- || fllzr < 400 lies in L>(, p).
Hint. Tchebychev’ inequality.

Solution: Let C' = sup,en«||fllzr and € > 0. Using Tchebychev’ inequality, we have:

p p 1 p
WA= Co+ ) = u{lIP > (C+P)) < oy [ 111

C p
S(C-I-E) —0, asp— oo.

Hence u({|f| > C +¢) = 0 and we deduce f € L. Since € > 0 was arbitrary, by

u({If] > C}) = pu(Unendlf] = C+1/n}) < 3" u{|fl = C+1/n}) =0

neN
we conclude || f]|z~ < C. O
(b) Show that if 41(€2) < +o0, then for any f as in part (a) we have that || f| L~ = lim || f||L».
p—00

Solution: Choose a sequence (p)ren such that limy_,oo|| f|| zre = iminf, || f||zr and let € > 0.
Take ko, such that || f| zer < lminf, | f||zr + ¢ for k > ko. Analogous to (a), it follows || f||ze <
liminf, .o || f|lzr + € and by letting € | 0, we deduce || f| p < liminf, | f|lze-
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For the opposite bound, choose a sequence (pg)ren With limy oo || f|lLre = limsup,_, || f|[zr. For
q > p, we have || f||%, < ||fII4,]|f|32. Take p > 1 and kg € N, such that p, > p for k > ko. It

follows

b 1—E k
I llzre < IAIZE Nl == 1 [ F e

As aresult, we see limsup,,_, || fl|zr = limg oo || f||zrr < || f]|zoc. Thus the limit is established. [

(c) Find f € M,en LP(2, p), where p(2) < +o0, with f ¢ L>(Q, ), i.e., show that the result

from part (a) does not hold true without the assumption sup || f||z» < +oc.
peEN

Solution: For f(z) = —log(z), we clearly have f € LP((0,1), L) but f ¢ L*°. O

Exercise 12.6.
Let (Znm)mmyenz C [0,400] be a sequence parametrized by N?. Show that

oo oo 0o oo
E Tnm = E E Tnm = E E Tnm-

(n,m)€eN2 n=0 m=0 m=0 n=0

Remark. Given a sequence (x4)aeca C [0, +00] parametrized by an arbitrary set A, we define

Zxa ‘= sup Za:a.

vy F C A finite acF

Solution: We show that Z(n,m)ENQ Tpm = Do dom—oZn,m, then the other equality follows
analogously. Let F' C N2 be any finite set, then there exists N € N such that F' c {0,1,...,N} x
{0,1,..., N}. Hence we get that

N N oo 00
Z Tpm < Z Z Tpm < Z Z Tnm-

(n,m)eF n=0m=0 n=0m=0

Taking the supremum over all F' C N2, we thus get that > (nm)enz Tngm < Y 0 > Tn,m- Let us

now prove the reversed inequality. It is sufficient to show that Zivzo Yoo Tnm < Z(n,m)ENQ Tn,m
for all N € N. Note that

N oo N M
)SPITTHEITD 9D ST IS DN S
n=0m=0 n=0m=0 (n,m)€{0,...,N}x{0,...,M} (n,m)eN?

which concludes the proof. O
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