Exercise 12.1.

The goal of this exercise is to compute the following Riemann integral:

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\lim _{a \rightarrow \infty} \int_{0}^{a} \frac{\sin x}{x} d x
$$

(a) Show that the function $\Phi:(0, \infty) \rightarrow \mathbb{R}$,

$$
\Phi(t)=\int_{0}^{\infty} e^{-t x} \frac{\sin x}{x} d x
$$

is well-defined and differentiable everywhere.
Solution: Finiteness is clear since $\left|\frac{\sin x}{x}\right| \leq 1$. For the differentiability, given any sequence $h_{j} \rightarrow 0$, we want to apply the dominated convergence theorem to commute the integral and the limit in the following computation:

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \frac{\Phi\left(t+h_{j}\right)-\Phi(t)}{h_{j}} & =\lim _{j \rightarrow \infty} \int_{0}^{\infty} \frac{e^{-\left(t+h_{j}\right) x}-e^{-t x}}{h_{j}} \frac{\sin x}{x} d x \\
& =\int_{0}^{\infty} \lim _{j \rightarrow \infty} \frac{e^{-\left(t+h_{j}\right) x}-e^{-t x}}{h_{j}} \frac{\sin x}{x} d x \\
& =\int_{0}^{\infty} \frac{d}{d t}\left(e^{-t x}\right) \frac{\sin x}{x} d x=\int_{0}^{\infty}-e^{-t x} \sin x d x
\end{aligned}
$$

For that, it is enough to bound the integrands by a summable function. We can do this by using the standard estimate $\left|e^{u}-1\right| \leq e^{|u|}|u|$, which follows from the mean value theorem. Thus

$$
\left|\frac{e^{-\left(t+h_{j}\right) x}-e^{-t x}}{h_{j}} \frac{\sin x}{x}\right|=\frac{\left|e^{-h_{j} x}-1\right|}{\left|h_{j}\right|} e^{-t x}\left|\frac{\sin x}{x}\right| \leq e^{\left|h_{j}\right| x} x e^{-t x}\left|\frac{\sin x}{x}\right|=e^{-t x / 2}|\sin x| \in L^{1}(0, \infty)
$$

whenever $\left|h_{j}\right| \leq t / 2$, which happens for j large enough. Thus $\Phi(t)$ is differentiable with derivative

$$
\Phi^{\prime}(t)=\int_{0}^{\infty}-e^{-t x} \sin x d x
$$

(b) Compute $\Phi^{\prime}(t)$ for $t \in(0, \infty)$.

Solution: Using the expression above we integrate twice by parts:

$$
\begin{aligned}
\Phi^{\prime}(t) & =-\int_{0}^{\infty} e^{-t x} \sin x d x \\
& =\left[e^{-t x} \cos x\right]_{0}^{\infty}-\int_{0}^{\infty}-t e^{-t x} \cos x d x \\
& =-1+t \int_{0}^{\infty} e^{-t x} \cos x d x \\
& =-1+\left[t e^{-t x} \sin x\right]_{0}^{\infty}-\int_{0}^{\infty}-t^{2} e^{-t x} \sin x d x \\
& =-1-t^{2} \Phi^{\prime}(t)
\end{aligned}
$$

so that

$$
\Phi^{\prime}(t)=-\frac{1}{1+t^{2}}
$$

(c) Compute $\Phi(t)$ for $t \in(0, \infty)$.

Solution: We show first that $\Phi(t) \rightarrow 0$ as $t \rightarrow \infty$: this follows immediately from dominated convergence, since $\left|\frac{\sin x}{x}\right| \leq 1$. Therefore the fundamental theorem of calculus yields

$$
\Phi(t)=-\left(\lim _{s \rightarrow \infty} \Phi(s)-\Phi(t)\right)=-\int_{t}^{\infty} \Phi^{\prime}(t)=\int_{t}^{\infty} \frac{1}{1+t^{2}} d t=\frac{\pi}{2}-\arctan (t)
$$

(d) Show that the convergence

$$
\int_{0}^{a} e^{-t x} \frac{\sin x}{x} d x \xrightarrow{a \rightarrow \infty} \int_{0}^{\infty} e^{-t x} \frac{\sin x}{x} d x
$$

is uniform in $t>0$.
Hint: this part is technically more difficult. It is not true that $\int_{a}^{\infty}\left|e^{-t x} \frac{\sin x}{x}\right| d x$ converges to zero uniformly in t as $a \rightarrow \infty$. Here one has to use the cancellations of the integral, for example by seeing that

$$
\sum_{k=m}^{\infty}\left|\int_{2 k \pi}^{2(k+1) \pi} e^{-t x} \frac{\sin x}{x} d x\right|
$$

converges to zero as $m \rightarrow \infty$ uniformly in t.
Solution: Given $a>0$, let $m \in \mathbb{N}$ be such that $2 \pi(m-1)<a \leq 2 \pi m$ and write

$$
\left|\int_{a}^{\infty} e^{-t x} \frac{\sin x}{x} d x\right| \leq \int_{a}^{2 \pi m}\left|e^{-t x} \frac{\sin x}{x}\right| d x+\sum_{k=m}^{\infty}\left|\int_{2 \pi k}^{2 \pi(k+1)} e^{-t x} \frac{\sin x}{x} d x\right|
$$

For the first term we have:

$$
\int_{a}^{2 \pi m}\left|e^{-t x} \frac{\sin x}{x}\right| d x \leq \frac{2 \pi m-a}{a} \leq \frac{2 \pi}{a}
$$

On the other hand, for each term in the sum we use two changes of variables and write

$$
\begin{aligned}
\int_{2 \pi k}^{2 \pi(k+1)} e^{-t x} \frac{\sin x}{x} & =\int_{0}^{\pi} e^{-t(2 k \pi+x)} \frac{\sin (2 k \pi+x)}{2 k \pi+x} d x+\int_{0}^{\pi} e^{-t((2 k+1) \pi+x)} \frac{\sin ((2 k+1) \pi+x)}{(2 k+1) \pi+x} d x \\
& =\int_{0}^{\pi} \sin x \frac{e^{-t(2 k \pi+x)}}{2 k \pi+x} d x-\int_{0}^{\pi} \sin x \frac{e^{-t((2 k+1) \pi+x)}}{(2 k+1) \pi+x} d x \\
& =\int_{0}^{\pi} \sin x\left(\frac{e^{-t(2 k \pi+x)}}{2 k \pi+x}-\frac{e^{-t((2 k+1) \pi+x)}}{(2 k+1) \pi+x}\right) d x \\
& \leq \pi\left(\frac{e^{-t(2 k \pi)}}{2 k \pi}-\frac{e^{-t(2(k+1) \pi)}}{2(k+1) \pi}\right)
\end{aligned}
$$

This is a telescoping series, so

$$
\left|\int_{a}^{\infty} e^{-t x} \frac{\sin x}{x} d x\right| \leq \frac{2 \pi}{a}+\pi \sum_{k=m}^{\infty}\left(\frac{e^{-t(2 k \pi)}}{2 k \pi}-\frac{e^{-t(2(k+1) \pi)}}{2(k+1) \pi}\right) \leq \frac{2 \pi}{a}+\pi \frac{e^{-t(2 m \pi)}}{2 m \pi} \leq \frac{2 \pi}{a}+\frac{\pi}{a},
$$

which tends to 0 as $a \rightarrow \infty$ uniformly in t.
(e) Conclude that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

Solution: Given $\varepsilon>0$, uniform convergence gives us some a_{0} such that for $a \geq a_{0}$,

$$
\begin{equation*}
\left|\int_{0}^{a} e^{-t x} \frac{\sin x}{x} d x-\int_{0}^{\infty} e^{-t x} \frac{\sin x}{x} d x\right| \leq \frac{\varepsilon}{3} \tag{1}
\end{equation*}
$$

holds for every $t>0$. Now fix $a \geq a_{0}$ and choose t small enough so that $a\left(1-e^{-t a}\right) \leq \varepsilon / 3$ and such that $\arctan t \leq \varepsilon / 3$. The first condition implies:

$$
\begin{equation*}
\left|\int_{0}^{a} \frac{\sin x}{x} d x-\int_{0}^{a} e^{-t x} \frac{\sin x}{x} d x\right| \leq \int_{0}^{a}\left(1-e^{-t x}\right) \frac{|\sin x|}{x} d x \leq a\left(1-e^{-t a}\right) \leq \frac{\varepsilon}{3}, \tag{2}
\end{equation*}
$$

while the second condition yields:

$$
\begin{equation*}
\left|\frac{\pi}{2}-\int_{0}^{\infty} e^{-t x} \frac{\sin x}{x} d x\right|=\left|\frac{\pi}{2}-\Phi(t)\right|=\arctan t \leq \frac{\varepsilon}{3} . \tag{3}
\end{equation*}
$$

Finally putting together (2), (1) and (3) we see that

$$
\left|\int_{0}^{a} \frac{\sin x}{x} d x-\frac{\pi}{2}\right| \leq \varepsilon
$$

for $a \geq a_{0}$ as we wanted to show.

Exercise 12.2.

Let $1 \leq p<\infty$. Show that if $\varphi \in L^{p}\left(\mathbb{R}^{n}\right)$ and φ is uniformly continuous, then

$$
\lim _{|x| \rightarrow \infty} \varphi(x)=0 .
$$

Solution: Suppose, by contradiction, that there is $\varepsilon>0$ and a sequence $\left\{x_{k}\right\}$ with $\left|x_{k}\right| \rightarrow \infty$ and $\left|\varphi\left(x_{k}\right)\right| \geq \varepsilon$. Then by uniform continuity, there is $\delta>0$ such that for every $x \in B_{\delta}\left(x_{k}\right)$ we have $\left|\varphi(x)-\varphi\left(x_{k}\right)\right| \leq \varepsilon / 2$, which implies that $|\varphi(x)| \geq \varepsilon / 2$. Since $\left|x_{k}\right| \rightarrow \infty$, we can pass to a subsequence $\left\{x_{k_{j}}\right\}$ with $\left|x_{k_{j}}\right|>\left|x_{k_{j-1}}\right|+2 \delta$. This implies in particular that for any $j \neq j^{\prime}$, $\left|x_{k_{j}}-x_{k_{j^{\prime}}}\right|>2 \delta$, so that the balls $B_{\delta}\left(x_{k_{j}}\right)$ and $B_{\delta}\left(x_{k_{j^{\prime}}}\right)$ are disjoint. Thus we get the following lower bound which shows that $\varphi \notin L^{p}\left(\mathbb{R}^{n}\right)$:

$$
\int_{\mathbb{R}^{n}}|\varphi(x)|^{p} d x \geq \sum_{j=1}^{\infty} \int_{B_{\delta}\left(x_{k_{j}}\right)}|\varphi(x)|^{p} d x \geq \sum_{j=1}^{\infty} \int_{B_{\delta}\left(x_{k_{j}}\right)}\left(\frac{\varepsilon}{2}\right)^{p} d x=+\infty
$$

Exercise 12.3.

Let μ be a Radon measure on \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ a μ-measurable set.
(a) (Generalized Hölder inequality) Consider $1 \leq p_{1}, \ldots, p_{k} \leq \infty$ such that $\frac{1}{r}=\sum_{i=1}^{k} \frac{1}{p_{i}} \leq 1$. Show that, given functions $f_{i} \in L^{p_{i}}(\Omega, \mu)$ for $i=1, \ldots, k$, it holds $\prod_{i=1}^{k} f_{i} \in L^{r}(\Omega, \mu)$ and

$$
\left\|\prod_{i=1}^{k} f_{i}\right\|_{L^{r}} \leq \prod_{i=1}^{k}\left\|f_{i}\right\|_{L^{p_{i}}} .
$$

Solution: We can suppose that all p_{i} are finite, since it is easy to deal with $p_{i}=\infty$ directly. We will prove the statement by induction. For $k=1$ there is nothing to prove. For the induction step $k-1 \rightarrow k$, we know that $\frac{1}{r}-\frac{1}{p_{k}}=\frac{p_{k}-r}{p_{k} r}=\sum_{j=1}^{k-1} \frac{1}{p_{j}}$. By the induction hypothesis, we have that $\prod_{j=1}^{k-1} f_{j} \in L^{\frac{p_{k} r}{p_{k}-r}}(\Omega, \mu)$ together with the estimate

$$
\left\|\prod_{j=1}^{k-1} f_{j}\right\|_{L^{\frac{p_{k} r}{p_{k}-r}}} \leq \prod_{j=1}^{k-1}\left\|f_{j}\right\|_{L^{p_{j}}} .
$$

Now we apply Hölder's inequality to the functions $g_{1}=\prod_{j=1}^{k-1}\left|f_{j}\right|^{r}$ and $g_{2}=\left|f_{k}\right|^{r}$, with exponents $\frac{p_{k}}{p_{k}-r}$ and $\frac{p_{k}}{r}$ respectively:

$$
\begin{aligned}
\int_{\Omega}\left(\prod_{j=1}^{k}\left|f_{k}\right|\right)^{r} & \leq\left(\int_{\Omega} \prod_{j=1}^{k-1}\left|f_{j}\right|^{\frac{p_{k}}{p_{k}-r}}\right)^{\frac{p_{k}-r}{p_{k}}}\left(\int_{\Omega}\left|f_{k}\right|^{\frac{p_{k}}{r}}\right)^{\frac{r}{p_{k}}} \\
& =\left\|\prod_{j=1}^{k-1} f_{j}\right\|_{L^{p_{k}-r}}^{r}\left\|f_{k}\right\|_{L^{p_{k}}}^{r} \leq \prod_{j=1}^{k-1}\left\|f_{j}\right\|_{L^{p_{j}}}^{r} \cdot\left\|f_{k}\right\|_{L^{p_{k}}}^{r} .
\end{aligned}
$$

This yields $\left\|\prod_{i=1}^{k} f_{i}\right\|_{L^{r}} \leq \prod_{i=1}^{k}\left\|f_{i}\right\|_{L^{p_{i}}}$, as we wanted to show.
(b) Prove that, if $\mu(\Omega)<+\infty$, then $L^{s}(\Omega, \mu) \subseteq L^{r}(\Omega, \mu)$ for all $1 \leq r<s \leq+\infty$.

Solution: Fix $1 \leq r<s \leq+\infty$ and define $p=r s /(s-r)$, for which it holds $\frac{1}{s}+\frac{1}{p}=\frac{1}{r}$. If $\mu(\Omega)<+\infty$, then $g=1 \in L^{p}(\Omega, \mu)$, hence we can apply part (a) and obtain that, for all $f \in L^{r}(\Omega, \mu), f=f \cdot 1 \in L^{r}(\Omega, \mu)$, which proves the desired inclusion.
(c) Show that the inclusion in part (b) is strict for all $1 \leq r<s \leq+\infty$.

Solution: For all $1 \leq r<+\infty$, consider the function $f:(0,1 / 2) \rightarrow \mathbb{R}$ given by

$$
f(x)=\left(\log ^{2}\left(\frac{1}{x}\right) x^{1 / r}\right)^{-1}
$$

Note that $f \in L^{r}$ since

$$
\begin{aligned}
\int_{0}^{1 / 2}\left(\log ^{2}\left(\frac{1}{x}\right) x^{1 / r}\right)^{-r} d x & =\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1 / 2}\left(\log ^{2 r}\left(\frac{1}{x}\right) x\right)^{-1} \\
& =\lim _{\varepsilon \rightarrow 0}\left[\frac{1}{(2 r-1) \log ^{2 r-1}(1 / x)}\right]_{\varepsilon}^{1 / 2}=\frac{1}{(2 r-1) \log ^{2 r-1}(2)}
\end{aligned}
$$

On the other hand $f \notin L^{s}$ for all $s>r$: in this case we can choose $0<t<\frac{1}{r}-\frac{1}{s}$ and estimate $\log ^{2}\left(\frac{1}{x}\right) \leq C x^{-t}$ with a constant $C>0$. Then follows

$$
\left(\log ^{2}\left(\frac{1}{x}\right) x^{1 / r}\right)^{-1} \geq \frac{1}{C} x^{t-\frac{1}{r}}
$$

with $s\left(t-\frac{1}{r}\right)<-1$, which is not integrable.

Exercise 12.4.

Let μ be a Radon measure on \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ a μ-measurable set with $\mu(\Omega)<+\infty$. Consider a function $f: \Omega \rightarrow \overline{\mathbb{R}}$ such that $f g \in L^{1}(\Omega, \mu)$ for all $g \in L^{p}(\Omega, \mu)$. Prove that $f \in L^{q}(\Omega, \mu)$ for all $q \in\left[1, p^{\prime}\right)$, where $p^{\prime}=\frac{p}{p-1}$ is the conjugate of p.

Solution: First note that, taking $g=1 \in L^{p}(\Omega, \mu)$, we get that $f \in L^{1}(\Omega, \mu)$. Hence we can consider the function $g=|f|^{1 / p} \in L^{p}(\Omega, \mu)$ and we get that $|f|^{1+1 / p} \in L^{1}(\Omega, \mu)$. Therefore we can choose $g=|f|^{1 / p+1 / p^{2}} \in L^{p}(\Omega, \mu)$ and get that $|f|^{1+1 / p+1 / p^{2}} \in L^{1}(\Omega, \mu)$.

Repeating again the same argument by induction, we get that $|f|^{p_{n}} \in L^{1}(\Omega, \mu)$ for all $n \in \mathbb{N}$, where $p_{n}=1+\frac{1}{p}+\cdots+\frac{1}{p^{n}}=\frac{1-1 / p^{n+1}}{1-1 / p}$. In particular we have that $f \in L^{p_{n}}(\Omega, \mu)$ for all $n \in \mathbb{N}$, which implies that $f \in L^{q}(\Omega, \mu)$ for all $1 \leq q \leq p_{n}$ by Exercise 12.3 (b). Now note that $p_{n} \rightarrow p^{\prime}$ as $n \rightarrow \infty$, thus $f \in L^{q}(\Omega, \mu)$ for all $1 \leq q<p^{\prime}$, as desired.

Exercise 12.5.

Let μ be a Radon measure on \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ a μ-measurable set.
(a) Show that any $f \in \bigcap_{p \in \mathbb{N}^{*}} L^{p}(\Omega, \mu)$ with $\sup _{p \in \mathbb{N}^{*}}\|f\|_{L^{p}}<+\infty$ lies in $L^{\infty}(\Omega, \mu)$. Hint. Tchebychev' inequality.
Solution: Let $C=\sup _{p \in \mathbb{N}^{*}}\|f\|_{L^{p}}$ and $\varepsilon>0$. Using Tchebychev' inequality, we have:

$$
\begin{aligned}
\mu(\{|f| \geq C+\varepsilon\}) & =\mu\left(\left\{|f|^{p} \geq(C+\varepsilon)^{p}\right\}\right) \leq \frac{1}{(C+\varepsilon)^{p}} \int_{\Omega}|f|^{p} d \mu \\
& \leq\left(\frac{C}{C+\varepsilon}\right)^{p} \rightarrow 0, \quad \text { as } p \rightarrow \infty
\end{aligned}
$$

Hence $\mu\left(\{|f| \geq C+\varepsilon)=0\right.$ and we deduce $f \in L^{\infty}$. Since $\varepsilon>0$ was arbitrary, by

$$
\mu(\{|f|>C\})=\mu\left(\cup_{n \in \mathbb{N}}\{|f| \geq C+1 / n\}\right) \leq \sum_{n \in \mathbb{N}} \mu(\{|f| \geq C+1 / n\})=0
$$

we conclude $\|f\|_{L^{\infty}} \leq C$.
(b) Show that if $\mu(\Omega)<+\infty$, then for any f as in part (a) we have that $\|f\|_{L^{\infty}}=\lim _{p \rightarrow \infty}\|f\|_{L^{p}}$.

Solution: Choose a sequence $\left(p_{k}\right)_{k \in \mathbb{N}}$ such that $\lim _{k \rightarrow \infty}\|f\|_{L^{p_{k}}}=\liminf _{p \rightarrow \infty}\|f\|_{L^{p}}$ and let $\varepsilon>0$. Take k_{0}, such that $\|f\|_{L^{p_{k}}} \leq \liminf _{p \rightarrow \infty}\|f\|_{L^{p}}+\varepsilon$ for $k \geq k_{0}$. Analogous to (a), it follows $\|f\|_{L^{\infty}} \leq$ $\liminf _{p \rightarrow \infty}\|f\|_{L^{p}}+\varepsilon$ and by letting $\varepsilon \downarrow 0$, we deduce $\|f\|_{L^{\infty}} \leq \liminf _{p \rightarrow \infty}\|f\|_{L^{p}}$.

For the opposite bound, choose a sequence $\left(p_{k}\right)_{k \in \mathbb{N}}$ with $\lim _{k \rightarrow \infty}\|f\|_{L^{p_{k}}}=\lim \sup _{p \rightarrow \infty}\|f\|_{L^{p}}$. For $q>p$, we have $\|f\|_{L^{q}}^{q} \leq\|f\|_{L^{p}}^{p}\|f\|_{L^{\infty}}^{q-p}$. Take $p>1$ and $k_{0} \in \mathbb{N}$, such that $p_{k}>p$ for $k \geq k_{0}$. It follows

$$
\|f\|_{L^{p_{k}}} \leq\|f\|_{L^{p}}^{\frac{p}{p_{k}}}\|f\|_{L^{\infty}}^{1-\frac{p}{p_{k}}} \xrightarrow{k \rightarrow \infty} 1 \cdot\|f\|_{L^{\infty}} .
$$

As a result, we see $\lim \sup _{p \rightarrow \infty}\|f\|_{L^{p}}=\lim _{k \rightarrow \infty}\|f\|_{L^{p_{k}}} \leq\|f\|_{L^{\infty}}$. Thus the limit is established.
(c) Find $f \in \bigcap_{p \in \mathbb{N}} L^{p}(\Omega, \mu)$, where $\mu(\Omega)<+\infty$, with $f \notin L^{\infty}(\Omega, \mu)$, i.e., show that the result from part (a) does not hold true without the assumption $\sup _{p \in \mathbb{N}}\|f\|_{L^{p}}<+\infty$.
Solution: For $f(x)=-\log (x)$, we clearly have $f \in L^{p}\left((0,1), \mathcal{L}^{1}\right)$ but $f \notin L^{\infty}$.

Exercise 12.6.

Let $\left(x_{n, m}\right)_{(n, m) \in \mathbb{N}^{2}} \subset[0,+\infty]$ be a sequence parametrized by \mathbb{N}^{2}. Show that

$$
\sum_{(n, m) \in \mathbb{N}^{2}} x_{n, m}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n, m}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x_{n, m}
$$

Remark. Given a sequence $\left(x_{\alpha}\right)_{\alpha \in A} \subset[0,+\infty]$ parametrized by an arbitrary set A, we define

$$
\sum_{\alpha \in A} x_{\alpha}:=\sup _{F \subset A \text { finite }} \sum_{\alpha \in F} x_{\alpha} .
$$

Solution: We show that $\sum_{(n, m) \in \mathbb{N}^{2}} x_{n, m}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n, m}$, then the other equality follows analogously. Let $F \subset \mathbb{N}^{2}$ be any finite set, then there exists $N \in \mathbb{N}$ such that $F \subset\{0,1, \ldots, N\} \times$ $\{0,1, \ldots, N\}$. Hence we get that

$$
\sum_{(n, m) \in F} x_{n, m} \leq \sum_{n=0}^{N} \sum_{m=0}^{N} x_{n, m} \leq \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n, m} .
$$

Taking the supremum over all $F \subset \mathbb{N}^{2}$, we thus get that $\sum_{(n, m) \in \mathbb{N}^{2}} x_{n, m} \leq \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n, m}$. Let us now prove the reversed inequality. It is sufficient to show that $\sum_{n=0}^{N} \sum_{m=0}^{\infty} x_{n, m} \leq \sum_{(n, m) \in \mathbb{N}^{2}} x_{n, m}$ for all $N \in \mathbb{N}$. Note that

$$
\sum_{n=0}^{N} \sum_{m=0}^{\infty} x_{n, m}=\lim _{M \rightarrow \infty} \sum_{n=0}^{N} \sum_{m=0}^{M} x_{n, m}=\lim _{M \rightarrow \infty} \sum_{(n, m) \in\{0, \ldots, N\} \times\{0, \ldots, M\}} x_{n, m} \leq \sum_{(n, m) \in \mathbb{N}^{2}} x_{n, m},
$$

which concludes the proof.

