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Exercise 12.1.
The goal of this exercise is to compute the following Riemann integral:∫ ∞

0

sinx

x
dx = lim

a→∞

∫ a

0

sinx

x
dx.

(a) Show that the function Φ : (0,∞) → R,

Φ(t) =

∫ ∞

0

e−tx sinx

x
dx,

is well-defined and differentiable everywhere.

Solution: Finiteness is clear since | sinx
x | ≤ 1. For the differentiability, given any sequence hj → 0,

we want to apply the dominated convergence theorem to commute the integral and the limit in the
following computation:

lim
j→∞

Φ(t+ hj)− Φ(t)

hj
= lim

j→∞

∫ ∞

0

e−(t+hj)x − e−tx

hj

sinx

x
dx

=

∫ ∞

0
lim
j→∞

e−(t+hj)x − e−tx

hj

sinx

x
dx

=

∫ ∞

0

d

dt

(
e−tx

) sinx
x

dx =

∫ ∞

0
−e−tx sinx dx.

For that, it is enough to bound the integrands by a summable function. We can do this by using
the standard estimate |eu − 1| ≤ e|u||u|, which follows from the mean value theorem. Thus∣∣∣∣∣e−(t+hj)x − e−tx

hj

sinx

x

∣∣∣∣∣ =
∣∣e−hjx − 1

∣∣
|hj |

e−tx

∣∣∣∣sinxx
∣∣∣∣ ≤ e|hj |xxe−tx

∣∣∣∣sinxx
∣∣∣∣ = e−tx/2| sinx| ∈ L1(0,∞)

whenever |hj | ≤ t/2, which happens for j large enough. Thus Φ(t) is differentiable with derivative

Φ′(t) =

∫ ∞

0
−e−tx sinx dx.

(b) Compute Φ′(t) for t ∈ (0,∞).

Solution: Using the expression above we integrate twice by parts:

Φ′(t) = −
∫ ∞

0
e−tx sinx dx

=
[
e−tx cosx

]∞
0

−
∫ ∞

0
−te−tx cosx dx

= −1 + t

∫ ∞

0
e−tx cosx dx

= −1 +
[
te−tx sinx

]∞
0

−
∫ ∞

0
−t2e−tx sinx dx

= −1− t2Φ′(t)
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so that

Φ′(t) = − 1

1 + t2
.

(c) Compute Φ(t) for t ∈ (0,∞).

Solution: We show first that Φ(t) → 0 as t → ∞: this follows immediately from dominated
convergence, since | sinx

x | ≤ 1. Therefore the fundamental theorem of calculus yields

Φ(t) = −
(
lim
s→∞

Φ(s)− Φ(t)
)
= −

∫ ∞

t
Φ′(t) =

∫ ∞

t

1

1 + t2
dt =

π

2
− arctan(t).

(d) Show that the convergence∫ a

0

e−tx sinx

x
dx

a→∞−−−→
∫ ∞

0

e−tx sinx

x
dx

is uniform in t > 0.

Hint: this part is technically more difficult. It is not true that
∫∞
a

∣∣e−tx sinx
x

∣∣ dx converges
to zero uniformly in t as a → ∞. Here one has to use the cancellations of the integral, for
example by seeing that

∞∑
k=m

∣∣∣∣∣
∫ 2(k+1)π

2kπ

e−tx sinx

x
dx

∣∣∣∣∣
converges to zero as m → ∞ uniformly in t.

Solution: Given a > 0, let m ∈ N be such that 2π(m− 1) < a ≤ 2πm and write∣∣∣∣∫ ∞

a
e−tx sinx

x
dx

∣∣∣∣ ≤ ∫ 2πm

a

∣∣∣∣e−tx sinx

x

∣∣∣∣ dx+
∞∑

k=m

∣∣∣∣∣
∫ 2π(k+1)

2πk
e−tx sinx

x
dx

∣∣∣∣∣ .
For the first term we have: ∫ 2πm

a

∣∣∣∣e−tx sinx

x

∣∣∣∣ dx ≤ 2πm− a

a
≤ 2π

a
.

On the other hand, for each term in the sum we use two changes of variables and write∫ 2π(k+1)

2πk
e−tx sinx

x
=

∫ π

0
e−t(2kπ+x) sin(2kπ + x)

2kπ + x
dx+

∫ π

0
e−t((2k+1)π+x) sin((2k + 1)π + x)

(2k + 1)π + x
dx

=

∫ π

0
sinx

e−t(2kπ+x)

2kπ + x
dx−

∫ π

0
sinx

e−t((2k+1)π+x)

(2k + 1)π + x
dx

=

∫ π

0
sinx

(
e−t(2kπ+x)

2kπ + x
− e−t((2k+1)π+x)

(2k + 1)π + x

)
dx

≤ π

(
e−t(2kπ)

2kπ
− e−t(2(k+1)π)

2(k + 1)π

)
.
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This is a telescoping series, so∣∣∣∣∫ ∞

a
e−tx sinx

x
dx

∣∣∣∣ ≤ 2π

a
+ π

∞∑
k=m

(
e−t(2kπ)

2kπ
− e−t(2(k+1)π)

2(k + 1)π

)
≤ 2π

a
+ π

e−t(2mπ)

2mπ
≤ 2π

a
+

π

a
,

which tends to 0 as a → ∞ uniformly in t.

(e) Conclude that ∫ ∞

0

sinx

x
dx =

π

2
.

Solution: Given ε > 0, uniform convergence gives us some a0 such that for a ≥ a0,∣∣∣∣∫ a

0
e−tx sinx

x
dx−

∫ ∞

0
e−tx sinx

x
dx

∣∣∣∣ ≤ ε

3
(1)

holds for every t > 0. Now fix a ≥ a0 and choose t small enough so that a(1 − e−ta) ≤ ε/3 and
such that arctan t ≤ ε/3. The first condition implies:∣∣∣∣∫ a

0

sinx

x
dx−

∫ a

0
e−tx sinx

x
dx

∣∣∣∣ ≤ ∫ a

0
(1− e−tx)

| sinx|
x

dx ≤ a(1− e−ta) ≤ ε

3
, (2)

while the second condition yields:∣∣∣∣π2 −
∫ ∞

0
e−tx sinx

x
dx

∣∣∣∣ = ∣∣∣π2 − Φ(t)
∣∣∣ = arctan t ≤ ε

3
. (3)

Finally putting together (2), (1) and (3) we see that∣∣∣∣∫ a

0

sinx

x
dx− π

2

∣∣∣∣ ≤ ε

for a ≥ a0 as we wanted to show.

Exercise 12.2.
Let 1 ≤ p < ∞. Show that if φ ∈ Lp(Rn) and φ is uniformly continuous, then

lim
|x|→∞

φ(x) = 0.

Solution: Suppose, by contradiction, that there is ε > 0 and a sequence {xk} with |xk| → ∞
and |φ(xk)| ≥ ε. Then by uniform continuity, there is δ > 0 such that for every x ∈ Bδ(xk) we
have |φ(x) − φ(xk)| ≤ ε/2, which implies that |φ(x)| ≥ ε/2. Since |xk| → ∞, we can pass to
a subsequence {xkj} with |xkj | > |xkj−1

| + 2δ. This implies in particular that for any j ̸= j′,
|xkj − xkj′ | > 2δ, so that the balls Bδ(xkj ) and Bδ(xkj′ ) are disjoint. Thus we get the following
lower bound which shows that φ /∈ Lp(Rn):∫

Rn

|φ(x)|p dx ≥
∞∑
j=1

∫
Bδ(xkj

)
|φ(x)|p dx ≥

∞∑
j=1

∫
Bδ(xkj

)

(ε
2

)p
dx = +∞
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Exercise 12.3.
Let µ be a Radon measure on Rn and Ω ⊂ Rn a µ-measurable set.

(a) (Generalized Hölder inequality) Consider 1 ≤ p1, . . . , pk ≤ ∞ such that 1
r
=
∑k

i=1
1
pi
≤ 1.

Show that, given functions fi ∈ Lpi(Ω, µ) for i = 1, . . . , k, it holds
∏k

i=1 fi ∈ Lr(Ω, µ) and∥∥∥∥ k∏
i=1

fi

∥∥∥∥
Lr

≤
k∏

i=1

∥fi∥Lpi .

Solution: We can suppose that all pi are finite, since it is easy to deal with pi = ∞ directly. We
will prove the statement by induction. For k = 1 there is nothing to prove. For the induction step
k − 1 → k, we know that 1

r − 1
pk

= pk−r
pkr

=
∑k−1

j=1
1
pj
. By the induction hypothesis, we have that∏k−1

j=1 fj ∈ L
pkr

pk−r (Ω, µ) together with the estimate∥∥∥∥∥∥
k−1∏
j=1

fj

∥∥∥∥∥∥
L

pkr
pk−r

≤
k−1∏
j=1

∥fj∥Lpj .

Now we apply Hölder’s inequality to the functions g1 =
∏k−1

j=1 |fj |r and g2 = |fk|r, with exponents
pk

pk−r and pk
r respectively:

∫
Ω

 k∏
j=1

|fk|

r

≤

∫
Ω

k−1∏
j=1

|fj |
r

pk
pk−r


pk−r

pk (∫
Ω
|fk|r

pk
r

) r
pk

=

∥∥∥∥∥∥
k−1∏
j=1

fj

∥∥∥∥∥∥
r

L
pkr
pk−r

∥fk∥rLpk ≤
k−1∏
j=1

∥fj∥rLpj · ∥fk∥rLpk .

This yields ∥
∏k

i=1 fi∥Lr ≤
∏k

i=1 ∥fi∥Lpi , as we wanted to show.

(b) Prove that, if µ(Ω) < +∞, then Ls(Ω, µ) ⊆ Lr(Ω, µ) for all 1 ≤ r < s ≤ +∞.

Solution: Fix 1 ≤ r < s ≤ +∞ and define p = rs/(s − r), for which it holds 1
s + 1

p = 1
r .

If µ(Ω) < +∞, then g = 1 ∈ Lp(Ω, µ), hence we can apply part (a) and obtain that, for all
f ∈ Lr(Ω, µ), f = f · 1 ∈ Lr(Ω, µ), which proves the desired inclusion.

(c) Show that the inclusion in part (b) is strict for all 1 ≤ r < s ≤ +∞.

Solution: For all 1 ≤ r < +∞, consider the function f : (0, 1/2) → R given by

f(x) =

(
log2

(
1

x

)
x1/r

)−1

.

Note that f ∈ Lr since∫ 1/2

0

(
log2

(
1

x

)
x1/r

)−r

dx = lim
ε→0

∫ 1/2

ε

(
log2r

(
1

x

)
x

)−1

= lim
ε→0

[
1

(2r − 1) log2r−1(1/x)

]1/2
ε

=
1

(2r − 1) log2r−1(2)
.
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On the other hand f ̸∈ Ls for all s > r: in this case we can choose 0 < t < 1
r − 1

s and estimate
log2

(
1
x

)
≤ Cx−t with a constant C > 0. Then follows(

log2
(
1

x

)
x1/r

)−1

≥ 1

C
xt−

1
r

with s
(
t− 1

r

)
< −1, which is not integrable.

Exercise 12.4.
Let µ be a Radon measure on Rn and Ω ⊂ Rn a µ-measurable set with µ(Ω) < +∞. Consider
a function f : Ω → R such that fg ∈ L1(Ω, µ) for all g ∈ Lp(Ω, µ). Prove that f ∈ Lq(Ω, µ)
for all q ∈ [1, p′), where p′ = p

p−1
is the conjugate of p.

Solution: First note that, taking g = 1 ∈ Lp(Ω, µ), we get that f ∈ L1(Ω, µ). Hence we can
consider the function g = |f |1/p ∈ Lp(Ω, µ) and we get that |f |1+1/p ∈ L1(Ω, µ). Therefore we can
choose g = |f |1/p+1/p2 ∈ Lp(Ω, µ) and get that |f |1+1/p+1/p2 ∈ L1(Ω, µ).

Repeating again the same argument by induction, we get that |f |pn ∈ L1(Ω, µ) for all n ∈ N, where
pn = 1 + 1

p + · · · + 1
pn = 1−1/pn+1

1−1/p . In particular we have that f ∈ Lpn(Ω, µ) for all n ∈ N, which
implies that f ∈ Lq(Ω, µ) for all 1 ≤ q ≤ pn by Exercise 12.3 (b). Now note that pn → p′ as n → ∞,
thus f ∈ Lq(Ω, µ) for all 1 ≤ q < p′, as desired.

Exercise 12.5.
Let µ be a Radon measure on Rn and Ω ⊂ Rn a µ-measurable set.

(a) Show that any f ∈
⋂

p∈N∗ Lp(Ω, µ) with supp∈N∗ ∥f∥Lp < +∞ lies in L∞(Ω, µ).

Hint. Tchebychev’ inequality.

Solution: Let C = supp∈N∗∥f∥Lp and ε > 0. Using Tchebychev’ inequality, we have:

µ({|f | ≥ C + ε}) = µ({|f |p ≥ (C + ε)p}) ≤ 1

(C + ε)p

∫
Ω
|f |pdµ

≤
(

C

C + ε

)p

→ 0 , as p → ∞.

Hence µ({|f | ≥ C + ε) = 0 and we deduce f ∈ L∞. Since ε > 0 was arbitrary, by

µ({|f | > C}) = µ(∪n∈N{|f | ≥ C + 1/n}) ≤
∑
n∈N

µ({|f | ≥ C + 1/n}) = 0

we conclude ∥f∥L∞ ≤ C.

(b) Show that if µ(Ω) < +∞, then for any f as in part (a) we have that ∥f∥L∞ = lim
p→∞

∥f∥Lp .

Solution: Choose a sequence (pk)k∈N such that limk→∞∥f∥Lpk = lim infp→∞∥f∥Lp and let ε > 0.
Take k0, such that ∥f∥Lpk ≤ lim infp→∞∥f∥Lp + ε for k ≥ k0. Analogous to (a), it follows ∥f∥L∞ ≤
lim infp→∞∥f∥Lp + ε and by letting ε ↓ 0, we deduce ∥f∥L∞ ≤ lim infp→∞∥f∥Lp .
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For the opposite bound, choose a sequence (pk)k∈N with limk→∞∥f∥Lpk = lim supp→∞∥f∥Lp . For

q > p, we have ∥f∥qLq ≤ ∥f∥pLp∥f∥q−p
L∞ . Take p > 1 and k0 ∈ N, such that pk > p for k ≥ k0. It

follows

∥f∥Lpk ≤ ∥f∥
p
pk
Lp ∥f∥

1− p
pk

L∞
k→∞−−−→ 1 · ∥f∥L∞ .

As a result, we see lim supp→∞∥f∥Lp = limk→∞∥f∥Lpk ≤ ∥f∥L∞ . Thus the limit is established.

(c) Find f ∈
⋂

p∈N L
p(Ω, µ), where µ(Ω) < +∞, with f /∈ L∞(Ω, µ), i.e., show that the result

from part (a) does not hold true without the assumption sup
p∈N

∥f∥Lp < +∞.

Solution: For f(x) = − log(x), we clearly have f ∈ Lp((0, 1),L1) but f /∈ L∞.

Exercise 12.6.
Let (xn,m)(n,m)∈N2 ⊂ [0,+∞] be a sequence parametrized by N2. Show that

∑
(n,m)∈N2

xn,m =
∞∑
n=0

∞∑
m=0

xn,m =
∞∑

m=0

∞∑
n=0

xn,m.

Remark. Given a sequence (xα)α∈A ⊂ [0,+∞] parametrized by an arbitrary set A, we define∑
α∈A

xα := sup
F ⊂ A finite

∑
α∈F

xα.

Solution: We show that
∑

(n,m)∈N2 xn,m =
∑∞

n=0

∑∞
m=0 xn,m, then the other equality follows

analogously. Let F ⊂ N2 be any finite set, then there exists N ∈ N such that F ⊂ {0, 1, . . . , N} ×
{0, 1, . . . , N}. Hence we get that

∑
(n,m)∈F

xn,m ≤
N∑

n=0

N∑
m=0

xn,m ≤
∞∑
n=0

∞∑
m=0

xn,m.

Taking the supremum over all F ⊂ N2, we thus get that
∑

(n,m)∈N2 xn,m ≤
∑∞

n=0

∑∞
m=0 xn,m. Let us

now prove the reversed inequality. It is sufficient to show that
∑N

n=0

∑∞
m=0 xn,m ≤

∑
(n,m)∈N2 xn,m

for all N ∈ N. Note that

N∑
n=0

∞∑
m=0

xn,m = lim
M→∞

N∑
n=0

M∑
m=0

xn,m = lim
M→∞

∑
(n,m)∈{0,...,N}×{0,...,M}

xn,m ≤
∑

(n,m)∈N2

xn,m,

which concludes the proof.
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