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Exercise 13.1.
Let f ∈ Lp(R, λ), where λ is the Lebesgue measure. By means of Fubini’s Theorem, show
that the following equality holds:∫

R
|f(x)|pdx = p

∫ ∞
0

yp−1λ({x ∈ R : |f(x)| ≥ y})dy.

Hint: |f(x)|p =
∫ |f(x)|
0

pyp−1dy.

Remark. Compare with Exercise 10.4. In that case there was an underlying Fubini-type
argument in the proof. This time we can use Fubini’s Theorem and get a straightforward
proof.

Solution: It is easy to see that |f(x)|p =
∫ |f(x)|
0 pyp−1dy. Therefore, using Fubini’s Theorem in

the second line (to change the order of integration), we get∫
R
|f(x)|pdx =

∫
R

(∫ |f(x)|
0

pyp−1dy

)
dx = p

∫
R

(∫
R
yp−1χ[ 0,|f(x)| ](y)dy

)
dx

= p

∫
R

(∫
R
χ{(x,y)∈R2: 0≤y≤|f(x)|}(x, y) dx

)
yp−1dy

= p

∫
R
λ({x ∈ R : |f(x)| ≥ y})χ[0,+∞)(y)yp−1dy

= p

∫ ∞
0

yp−1λ({x ∈ R : |f(x)| ≥ y})dy.

Exercise 13.2.
Define the function f : [0, 1]2 → R as

f(x, y) :=


y−2 if 0 < x < y < 1,

−x−2 if 0 < y < x < 1,

0 otherwise.

Is this function summable with respect to the Lebesgue measure?

Solution: We want to prove that f is not summable. Suppose it were summable. Then, we could
change the order of integration thanks to Fubini’s Theorem. However, this leads to a contradiction
since ∫ 1

0

∫ 1

0
f(x, y)dxdy =

∫ 1

0

(∫ y

0

1

y2
dx−

∫ 1

y

1

x2
dx

)
dy = 1

and ∫ 1

0

∫ 1

0
f(x, y)dydx =

∫ 1

0

(∫ x

0
− 1

x2
dy +

∫ 1

x

1

y2
dy

)
dx = −1 .
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Exercise 13.3.
Let 1 ≤ p < +∞ and f ∈ Lp(Rn) and, for all h ∈ Rn, consider the function τh : Rn → Rn

given by τh(x) = x+ h. Show that

‖f ◦ τh − f‖Lp → 0 as h→ 0.

Hint: use the density of continuous and compactly supported functions in Lp (Theorem
3.7.15 in the Lecture Notes).

Solution: Fix ε > 0, then by Theorem 3.7.15 there exists g ∈ C0
c (Rn) such that ‖f − g‖Lp < ε/3.

Define the compact set K = {x ∈ Rn | d(x, supp(g)) ≤ 1}, then for |h| ≤ 1 we have

‖g ◦ τh − g‖pLp =

∫
K
|g(x+ h)− g(x)|pdx ≤ Ln(K) sup

|x−y|≤h
|g(x)− g(y)|.

Therefore, using that g is uniformly continuous, there exists r > 0 such that ‖g ◦ τh − g‖Lp < ε/3
for all |h| ≤ r. Hence, for all |h| ≤ r, we have

‖f ◦ τh − f‖Lp ≤ ‖f ◦ τh − g ◦ τh‖Lp + ‖g ◦ τh − g‖Lp + ‖g − f‖Lp < ε,

which proves what we wanted by arbitrariness of ε.

Exercise 13.4.
We say that a family (ϕε)ε>0 of functions in L1(Rn) is an approximate identity if:

1. ϕε ≥ 0 and
∫
Rn ϕε(x)dx = 1 for all ε > 0;

2. for all δ > 0 we have that
∫
{|x|≥δ} ϕε(x)dx→ 0 as ε→ 0.

(a) Given ϕ ∈ L1(Rn) such that ϕ ≥ 0 and
∫
Rn ϕ(x)dx = 1, define ϕε(x) = ε−nϕ(ε−1x) for

all ε > 0. Show that (ϕε)ε>0 is an approximate identity.

Solution: Obviously we have that ϕε ≥ 0. Moreover∫
Rn

ϕε(x)dx =

∫
Rn

ϕ(ε−1(x))ε−ndx =

∫
Rn

ϕ(y)dy = 1,

where we made the change of variable y = ε−1x and we used the fact that Ln(ε−1A) = ε−nLn(A)
for all Ln-measurable sets A. Fix now δ > 0, using the same change of variable we get∫

{|x|≥δ}
ϕε(x)dx =

∫
{|x|≥δ}

ϕ(ε−1(x))ε−ndx =

∫
{|y|≥ε−1δ}

ϕ(y)dy,

which converges to 0 by the Dominated Convergence Theorem, since the functions ϕχ{|y|≥ε−1δ}
converge pointwise to zero almost everywhere and are dominated by the Ln-summable function
ϕ.

Let (ϕε)ε>0 ⊂ L1(Rn) be an approximate identity. Show that the following statements hold.
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(b) If f ∈ L∞(Rn) is continuous at x0 ∈ Rn, then f∗ϕε is continuous and (f∗ϕε)(x0)→ f(x0)
as ε→ 0+.

Solution: Let us first prove that f ∗ ϕε is continuous. Note that, for all h ∈ Rn, we have

(f ∗ ϕε)(x+ h) =

∫
Rn

f(y)ϕε(x+ h− y)dy =

∫
Rn

f(y)(ϕε ◦ τh)(x− y)dy = (f ∗ (ϕε ◦ τh))(x).

Hence, using Corollary 4.4.6 (ii) to the functions f ∈ L∞(Rn) and ϕε ◦ τh − ϕε ∈ L1(Rn), we get

|(f ∗ ϕε)(x+ h)− (f ∗ ϕε)(x)| = |(f ∗ (ϕε ◦ τh − ϕε))(x)| ≤ ‖f‖L∞‖ϕε ◦ τh − ϕε‖L1 ,

which converges to 0 as h→ 0 thanks to Exercise 13.3. This proves that f ∗ ϕε is continuous.

Given δ > 0, by continuity of f at x0, there exists r > 0 such that |f(x0 − y) − f(x0)| < δ for all
|y| < r. Hence, using that

∫
Rn ϕε = 1, we get

|(f ∗ ϕε)(x0)− f(x0)| ≤
∫
Rn

|f(x0 − y)− f(x0)|ϕε(y)dy

=

∫
{|y|<r}

|f(x0 − y)− f(x0)|ϕε(y)dy +

∫
{|y|≥r}

|f(x0 − y)− f(x0)|ϕε(y)dy

≤ δ + 2‖f‖L∞
∫
{|y|≥r}

ϕε(y)dy,

which converges to δ as ε → 0 be definition of approximate identity. This concludes the proof by
arbitrariness of δ.

(c) If f ∈ L∞(Rn) is uniformly continuous, then f ∗ ϕε
L∞−−→ f as ε→ 0+.

Solution: The solution works the same as the one of part (b) using that, given δ > 0, there exists
r > 0 such that |f(x− y)− f(x)| < δ for all |y| < r, where r does not depend on x.

(d) If 1 ≤ p < +∞ and f ∈ Lp(Rn), then f ∗ ϕε
Lp

−→ f as ε→ 0+.

Hint: use Hölder’s inequality and keep in mind Exercise 13.3 and part (b).

Solution: First note that, by Corollary 4.4.6 (ii), f ∗ ϕε ∈ Lp(Rn). Now, using that
∫
Rn ϕε = 1

and Hölder inequality, we get

|(f ∗ ϕε)(x)− f(x)|p ≤
∣∣∣∣∫

Rn

(f(x− y)− f(x))ϕε(y)dy

∣∣∣∣p
=

∣∣∣∣∫
Rn

(f(x− y)− f(x))ϕε(y)1/pϕε(y)1/p
′
dy

∣∣∣∣p
≤
(∫

Rn

|f(x− y)− f(x)|pϕε(y)dy

)(∫
Rn

ϕε(y)dy

)p/p′
=

∫
Rn

|f(x− y)− f(x)|pϕε(y)dy.
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Then we integrate over Rn and use Tonelli’s theorem to get∫
Rn

|(f ∗ ϕε)(x)− f(x)|pdx ≤
∫
Rn

∫
Rn

|f(x− y)− f(x)|pϕε(y)dydx

=

∫
Rn

ϕε(y)

(∫
Rn

|f(x− y)− f(x)|pdx
)
dy =

∫
Rn

ϕε(y)‖f ◦ τ−y − f‖pLpdy.

Now denote by g : Rn → [0,+∞) the function g(y) = ‖f ◦ τ−y − f‖pLp . Observe that, by Exercise
13.3, the function g is continuous. Moreover g(y) ≤ 2p‖f‖pLp , hence g ∈ L∞(Rn). Therefore we
can use part (b) to obtain that (g ∗ ϕε)(0)→ g(0) = 0 as ε→ 0. However note that this concludes
the proof since

∫
Rn ϕε(y)‖f ◦ τ−y − f‖pLpdy = (g ∗ ϕε)(0).

Exercise 13.5.
Compute the following limits:

(a)

lim
n→∞

∫ 1

0

1 + nx

(1 + x)n
dx.

Solution: It is clear that the constant function 1, which is summable on [0, 1], dominates the
sequence. Moreover, for all x > 0 the integrand tends to 0 as n→∞. Therefore, by the dominated
convergence theorem,

lim
n→∞

∫ 1

0

1 + nx

(1 + x)n
dx =

∫ 1

0
lim
n→∞

1 + nx

(1 + x)n
dx =

∫ 1

0
0 dx = 0.

(b)

lim
n→∞

∫ 1

0

x log x

1 + n2x2
dx.

Solution: The integrand is clearly bounded above by the function x| log x|, which is bounded on
(0, 1) and therefore summable. Moreover, the sequence of integrands tends to 0 away from x = 0.
Therefore, as above, the limit of the integrals is 0.

Exercise 13.6.
Let I = [0, 1] and consider the function

f : I3 → [0,∞], f(x, y, z) :=

{
1√
|y−z|

, if y 6= z,

∞, if y = z.

Show that f ∈ L1(I3,L3).
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Solution: Note that f ≥ 0 and that f is continuous outside the closed set {y = z}. This shows
that f is Lebesgue-measurable. We first apply Fubini’s theorem twice:∫

I3
f(x, y, z)dL3(x, y, z) =

∫
I

(∫
I2
f(x, y, z)dL2(y, z)

)
dL1(x)

=

∫
I

(∫
I

(∫
I
f(x, y, z)dL1(y)

)
dL1(z)

)
dL1(x).

Now we compute the inner integral for x, z fixed:∫
I
f(x, y, z) dL1(y) =

∫
I\{z}

1√
|y − z|

dL1(y)

=

∫ z

0

1√
z − y

dL1(y) +

∫ 1

z

1√
y − z

dL1(y)

=
[
−2
√
z − y

]y=z
y=0

+
[
2
√
y − z

]y=1

y=z

= 2
√
z + 2

√
1− z.

Therefore for each x ∈ I we have∫
I2
f(x, y, z) dL2(y, z) =

∫
I

2
√
z + 2

√
1− z dL1(z) =

8

3
,

and finally we get∫
I3
|f(x, y, z)| dL3(x, y, z) =

∫
I3
f(x, y, z) dL3(x, y, z) =

∫
I

8

3
dL1(x) =

8

3
<∞,

which shows that f ∈ L1(I3,L3).

Exercise 13.7.
Find a sequence of Lebesgue-measurable functions fn : [0, 1] → R such that {fn(x)}n∈N is
unbounded for any x ∈ [0, 1] but fn → 0 in measure.

Solution: For n ∈ Z+ and k ∈ {1, . . . , n}, let gkn(x) = nχ[ k−1
n
, k
n ](x) and look at the sequence

g11, g
1
2, g

2
2, g

1
3, g

2
3, g

3
3, . . .. It is clear that

L1({x ∈ [0, 1] | |gkn(x)| > ε}) = L1
([

k − 1

n
,
k

n

])
=

1

n

n→∞−−−→ 0.

for any ε > 0, which shows that the sequence converges to the function 0 in measure. On the other
hand, given x ∈ [0, 1], for each n ∈ Z+ we can choose k ∈ {1, . . . , n} such that nx ∈ [k − 1, k],
which means that gkn(x) = n. This implies that the sequence {gkn(x)}n,k is unbounded.
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