Exercise 13.1.

Let $f \in L^{p}(\mathbb{R}, \lambda)$, where λ is the Lebesgue measure. By means of Fubini's Theorem, show that the following equality holds:

$$
\int_{\mathbb{R}}|f(x)|^{p} d x=p \int_{0}^{\infty} y^{p-1} \lambda(\{x \in \mathbb{R}:|f(x)| \geq y\}) d y .
$$

Hint: $|f(x)|^{p}=\int_{0}^{|f(x)|} p y^{p-1} d y$.
Remark. Compare with Exercise 10.4. In that case there was an underlying Fubini-type argument in the proof. This time we can use Fubini's Theorem and get a straightforward proof.

Solution: It is easy to see that $|f(x)|^{p}=\int_{0}^{|f(x)|} p y^{p-1} d y$. Therefore, using Fubini's Theorem in the second line (to change the order of integration), we get

$$
\begin{aligned}
\int_{\mathbb{R}}|f(x)|^{p} d x & =\int_{\mathbb{R}}\left(\int_{0}^{|f(x)|} p y^{p-1} d y\right) d x=p \int_{\mathbb{R}}\left(\int_{\mathbb{R}} y^{p-1} \chi_{[0,|f(x)|]}(y) d y\right) d x \\
& =p \int_{\mathbb{R}}\left(\int_{\mathbb{R}} \chi_{\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq|f(x)|\right\}}(x, y) d x\right) y^{p-1} d y \\
& =p \int_{\mathbb{R}} \lambda(\{x \in \mathbb{R}:|f(x)| \geq y\}) \chi_{[0,+\infty)}(y) y^{p-1} d y \\
& =p \int_{0}^{\infty} y^{p-1} \lambda(\{x \in \mathbb{R}:|f(x)| \geq y\}) d y .
\end{aligned}
$$

Exercise 13.2.

Define the function $f:[0,1]^{2} \rightarrow \mathbb{R}$ as

$$
f(x, y):= \begin{cases}y^{-2} & \text { if } 0<x<y<1 \\ -x^{-2} & \text { if } 0<y<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Is this function summable with respect to the Lebesgue measure?
Solution: We want to prove that f is not summable. Suppose it were summable. Then, we could change the order of integration thanks to Fubini's Theorem. However, this leads to a contradiction since

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y=\int_{0}^{1}\left(\int_{0}^{y} \frac{1}{y^{2}} d x-\int_{y}^{1} \frac{1}{x^{2}} d x\right) d y=1
$$

and

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x=\int_{0}^{1}\left(\int_{0}^{x}-\frac{1}{x^{2}} d y+\int_{x}^{1} \frac{1}{y^{2}} d y\right) d x=-1
$$

Exercise 13.3.

Let $1 \leq p<+\infty$ and $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and, for all $h \in \mathbb{R}^{n}$, consider the function $\tau_{h}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $\tau_{h}(x)=x+h$. Show that

$$
\left\|f \circ \tau_{h}-f\right\|_{L^{p}} \rightarrow 0 \quad \text { as } h \rightarrow 0 .
$$

Hint: use the density of continuous and compactly supported functions in L^{p} (Theorem 3.7.15 in the Lecture Notes).

Solution: Fix $\varepsilon>0$, then by Theorem 3.7.15 there exists $g \in C_{c}^{0}\left(\mathbb{R}^{n}\right)$ such that $\|f-g\|_{L^{p}}<\varepsilon / 3$. Define the compact set $K=\left\{x \in \mathbb{R}^{n} \mid d(x, \operatorname{supp}(g)) \leq 1\right\}$, then for $|h| \leq 1$ we have

$$
\left\|g \circ \tau_{h}-g\right\|_{L^{p}}^{p}=\int_{K}|g(x+h)-g(x)|^{p} d x \leq \mathcal{L}^{n}(K) \sup _{|x-y| \leq h}|g(x)-g(y)| .
$$

Therefore, using that g is uniformly continuous, there exists $r>0$ such that $\left\|g \circ \tau_{h}-g\right\|_{L^{p}}<\varepsilon / 3$ for all $|h| \leq r$. Hence, for all $|h| \leq r$, we have

$$
\left\|f \circ \tau_{h}-f\right\|_{L^{p}} \leq\left\|f \circ \tau_{h}-g \circ \tau_{h}\right\|_{L^{p}}+\left\|g \circ \tau_{h}-g\right\|_{L^{p}}+\|g-f\|_{L^{p}}<\varepsilon,
$$

which proves what we wanted by arbitrariness of ε.

Exercise 13.4.

We say that a family $\left(\varphi_{\varepsilon}\right)_{\varepsilon>0}$ of functions in $L^{1}\left(\mathbb{R}^{n}\right)$ is an approximate identity if:

1. $\varphi_{\varepsilon} \geq 0$ and $\int_{\mathbb{R}^{n}} \varphi_{\varepsilon}(x) d x=1$ for all $\varepsilon>0$;
2. for all $\delta>0$ we have that $\int_{\{|x| \geq \delta\}} \varphi_{\varepsilon}(x) d x \rightarrow 0$ as $\varepsilon \rightarrow 0$.
(a) Given $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$ such that $\varphi \geq 0$ and $\int_{\mathbb{R}^{n}} \varphi(x) d x=1$, define $\varphi_{\varepsilon}(x)=\varepsilon^{-n} \varphi\left(\varepsilon^{-1} x\right)$ for all $\varepsilon>0$. Show that $\left(\varphi_{\varepsilon}\right)_{\varepsilon>0}$ is an approximate identity.
Solution: Obviously we have that $\varphi_{\varepsilon} \geq 0$. Moreover

$$
\int_{\mathbb{R}^{n}} \varphi_{\varepsilon}(x) d x=\int_{\mathbb{R}^{n}} \varphi\left(\varepsilon^{-1}(x)\right) \varepsilon^{-n} d x=\int_{\mathbb{R}^{n}} \varphi(y) d y=1,
$$

where we made the change of variable $y=\varepsilon^{-1} x$ and we used the fact that $\mathcal{L}^{n}\left(\varepsilon^{-1} A\right)=\varepsilon^{-n} \mathcal{L}^{n}(A)$ for all \mathcal{L}^{n}-measurable sets A. Fix now $\delta>0$, using the same change of variable we get

$$
\int_{\{|x| \geq \delta\}} \varphi_{\varepsilon}(x) d x=\int_{\{|x| \geq \delta\}} \varphi\left(\varepsilon^{-1}(x)\right) \varepsilon^{-n} d x=\int_{\left\{|y| \geq \varepsilon^{-1} \delta\right\}} \varphi(y) d y,
$$

which converges to 0 by the Dominated Convergence Theorem, since the functions $\varphi \chi_{\left\{|y| \geq \varepsilon^{-1} \delta\right\}}$ converge pointwise to zero almost everywhere and are dominated by the \mathcal{L}^{n}-summable function φ.

Let $\left(\varphi_{\varepsilon}\right)_{\varepsilon>0} \subset L^{1}\left(\mathbb{R}^{n}\right)$ be an approximate identity. Show that the following statements hold.
(b) If $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ is continuous at $x_{0} \in \mathbb{R}^{n}$, then $f * \varphi_{\varepsilon}$ is continuous and $\left(f * \varphi_{\varepsilon}\right)\left(x_{0}\right) \rightarrow f\left(x_{0}\right)$ as $\varepsilon \rightarrow 0^{+}$.
Solution: Let us first prove that $f * \varphi_{\varepsilon}$ is continuous. Note that, for all $h \in \mathbb{R}^{n}$, we have

$$
\left(f * \varphi_{\varepsilon}\right)(x+h)=\int_{\mathbb{R}^{n}} f(y) \varphi_{\varepsilon}(x+h-y) d y=\int_{\mathbb{R}^{n}} f(y)\left(\varphi_{\varepsilon} \circ \tau_{h}\right)(x-y) d y=\left(f *\left(\varphi_{\varepsilon} \circ \tau_{h}\right)\right)(x)
$$

Hence, using Corollary 4.4 .6 (ii) to the functions $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ and $\varphi_{\varepsilon} \circ \tau_{h}-\varphi_{\varepsilon} \in L^{1}\left(\mathbb{R}^{n}\right)$, we get

$$
\left|\left(f * \varphi_{\varepsilon}\right)(x+h)-\left(f * \varphi_{\varepsilon}\right)(x)\right|=\left|\left(f *\left(\varphi_{\varepsilon} \circ \tau_{h}-\varphi_{\varepsilon}\right)\right)(x)\right| \leq\|f\|_{L^{\infty}}\left\|\varphi_{\varepsilon} \circ \tau_{h}-\varphi_{\varepsilon}\right\|_{L^{1}}
$$

which converges to 0 as $h \rightarrow 0$ thanks to Exercise 13.3. This proves that $f * \varphi_{\varepsilon}$ is continuous.
Given $\delta>0$, by continuity of f at x_{0}, there exists $r>0$ such that $\left|f\left(x_{0}-y\right)-f\left(x_{0}\right)\right|<\delta$ for all $|y|<r$. Hence, using that $\int_{\mathbb{R}^{n}} \varphi_{\varepsilon}=1$, we get

$$
\begin{aligned}
\mid\left(f * \varphi_{\varepsilon}\right)\left(x_{0}\right) & -f\left(x_{0}\right)\left|\leq \int_{\mathbb{R}^{n}}\right| f\left(x_{0}-y\right)-f\left(x_{0}\right) \mid \varphi_{\varepsilon}(y) d y \\
& =\int_{\{|y|<r\}}\left|f\left(x_{0}-y\right)-f\left(x_{0}\right)\right| \varphi_{\varepsilon}(y) d y+\int_{\{|y| \geq r\}}\left|f\left(x_{0}-y\right)-f\left(x_{0}\right)\right| \varphi_{\varepsilon}(y) d y \\
& \leq \delta+2\|f\|_{L^{\infty}} \int_{\{|y| \geq r\}} \varphi_{\varepsilon}(y) d y,
\end{aligned}
$$

which converges to δ as $\varepsilon \rightarrow 0$ be definition of approximate identity. This concludes the proof by arbitrariness of δ.
(c) If $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ is uniformly continuous, then $f * \varphi_{\varepsilon} \xrightarrow{L^{\infty}} f$ as $\varepsilon \rightarrow 0^{+}$.

Solution: The solution works the same as the one of part (b) using that, given $\delta>0$, there exists $r>0$ such that $|f(x-y)-f(x)|<\delta$ for all $|y|<r$, where r does not depend on x.
(d) If $1 \leq p<+\infty$ and $f \in L^{p}\left(\mathbb{R}^{n}\right)$, then $f * \varphi_{\varepsilon} \xrightarrow{L^{p}} f$ as $\varepsilon \rightarrow 0^{+}$.

Hint: use Hölder's inequality and keep in mind Exercise 13.3 and part (b).
Solution: First note that, by Corollary 4.4 .6 (ii), $f * \varphi_{\varepsilon} \in L^{p}\left(\mathbb{R}^{n}\right)$. Now, using that $\int_{\mathbb{R}^{n}} \varphi_{\varepsilon}=1$ and Hölder inequality, we get

$$
\begin{aligned}
\left|\left(f * \varphi_{\varepsilon}\right)(x)-f(x)\right|^{p} & \leq\left|\int_{\mathbb{R}^{n}}(f(x-y)-f(x)) \varphi_{\varepsilon}(y) d y\right|^{p} \\
& =\left|\int_{\mathbb{R}^{n}}(f(x-y)-f(x)) \varphi_{\varepsilon}(y)^{1 / p} \varphi_{\varepsilon}(y)^{1 / p^{\prime}} d y\right|^{p} \\
& \leq\left(\int_{\mathbb{R}^{n}}|f(x-y)-f(x)|^{p} \varphi_{\varepsilon}(y) d y\right)\left(\int_{\mathbb{R}^{n}} \varphi_{\varepsilon}(y) d y\right)^{p / p^{\prime}} \\
& =\int_{\mathbb{R}^{n}}|f(x-y)-f(x)|^{p} \varphi_{\varepsilon}(y) d y .
\end{aligned}
$$

Then we integrate over \mathbb{R}^{n} and use Tonelli's theorem to get

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \mid\left(f * \varphi_{\varepsilon}\right)(x) & -\left.f(x)\right|^{p} d x \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|f(x-y)-f(x)|^{p} \varphi_{\varepsilon}(y) d y d x \\
& =\int_{\mathbb{R}^{n}} \varphi_{\varepsilon}(y)\left(\int_{\mathbb{R}^{n}}|f(x-y)-f(x)|^{p} d x\right) d y=\int_{\mathbb{R}^{n}} \varphi_{\varepsilon}(y)\left\|f \circ \tau_{-y}-f\right\|_{L^{p}}^{p} d y .
\end{aligned}
$$

Now denote by $g: \mathbb{R}^{n} \rightarrow[0,+\infty)$ the function $g(y)=\left\|f \circ \tau_{-y}-f\right\|_{L^{p}}^{p}$. Observe that, by Exercise 13.3, the function g is continuous. Moreover $g(y) \leq 2^{p}\|f\|_{L^{p}}^{p}$, hence $g \in L^{\infty}\left(\mathbb{R}^{n}\right)$. Therefore we can use part (b) to obtain that $\left(g * \varphi_{\varepsilon}\right)(0) \rightarrow g(0)=0$ as $\varepsilon \rightarrow 0$. However note that this concludes the proof since $\int_{\mathbb{R}^{n}} \varphi_{\varepsilon}(y)\left\|f \circ \tau_{-y}-f\right\|_{L^{p}}^{p} d y=\left(g * \varphi_{\varepsilon}\right)(0)$.

Exercise 13.5.

Compute the following limits:
(a)

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{1+n x}{(1+x)^{n}} d x
$$

Solution: It is clear that the constant function 1 , which is summable on $[0,1]$, dominates the sequence. Moreover, for all $x>0$ the integrand tends to 0 as $n \rightarrow \infty$. Therefore, by the dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{1+n x}{(1+x)^{n}} d x=\int_{0}^{1} \lim _{n \rightarrow \infty} \frac{1+n x}{(1+x)^{n}} d x=\int_{0}^{1} 0 d x=0
$$

(b)

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{x \log x}{1+n^{2} x^{2}} d x
$$

Solution: The integrand is clearly bounded above by the function $x|\log x|$, which is bounded on $(0,1)$ and therefore summable. Moreover, the sequence of integrands tends to 0 away from $x=0$. Therefore, as above, the limit of the integrals is 0 .

Exercise 13.6.

Let $I=[0,1]$ and consider the function

$$
f: I^{3} \rightarrow[0, \infty], \quad f(x, y, z):= \begin{cases}\frac{1}{\sqrt{|y-z|}}, & \text { if } y \neq z \\ \infty, & \text { if } y=z\end{cases}
$$

Show that $f \in L^{1}\left(I^{3}, \mathcal{L}^{3}\right)$.

Solution: Note that $f \geq 0$ and that f is continuous outside the closed set $\{y=z\}$. This shows that f is Lebesgue-measurable. We first apply Fubini's theorem twice:

$$
\begin{aligned}
\int_{I^{3}} f(x, y, z) d \mathcal{L}^{3}(x, y, z) & =\int_{I}\left(\int_{I^{2}} f(x, y, z) d \mathcal{L}^{2}(y, z)\right) d \mathcal{L}^{1}(x) \\
& =\int_{I}\left(\int_{I}\left(\int_{I} f(x, y, z) d \mathcal{L}^{1}(y)\right) d \mathcal{L}^{1}(z)\right) d \mathcal{L}^{1}(x)
\end{aligned}
$$

Now we compute the inner integral for x, z fixed:

$$
\begin{aligned}
\int_{I} f(x, y, z) d \mathcal{L}^{1}(y) & =\int_{I \backslash\{z\}} \frac{1}{\sqrt{|y-z|}} d \mathcal{L}^{1}(y) \\
& =\int_{0}^{z} \frac{1}{\sqrt{z-y}} d \mathcal{L}^{1}(y)+\int_{z}^{1} \frac{1}{\sqrt{y-z}} d \mathcal{L}^{1}(y) \\
& =[-2 \sqrt{z-y}]_{y=0}^{y=z}+[2 \sqrt{y-z}]_{y=z}^{y=1} \\
& =2 \sqrt{z}+2 \sqrt{1-z} .
\end{aligned}
$$

Therefore for each $x \in I$ we have

$$
\int_{I^{2}} f(x, y, z) d \mathcal{L}^{2}(y, z)=\int_{I} 2 \sqrt{z}+2 \sqrt{1-z} d \mathcal{L}^{1}(z)=\frac{8}{3},
$$

and finally we get

$$
\int_{I^{3}}|f(x, y, z)| d \mathcal{L}^{3}(x, y, z)=\int_{I^{3}} f(x, y, z) d \mathcal{L}^{3}(x, y, z)=\int_{I} \frac{8}{3} d \mathcal{L}^{1}(x)=\frac{8}{3}<\infty
$$

which shows that $f \in L^{1}\left(I^{3}, \mathcal{L}^{3}\right)$.

Exercise 13.7.

Find a sequence of Lebesgue-measurable functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ such that $\left\{f_{n}(x)\right\}_{n \in \mathbb{N}}$ is unbounded for any $x \in[0,1]$ but $f_{n} \rightarrow 0$ in measure.

Solution: For $n \in \mathbb{Z}^{+}$and $k \in\{1, \ldots, n\}$, let $g_{n}^{k}(x)=n \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right]}(x)$ and look at the sequence $g_{1}^{1}, g_{2}^{1}, g_{2}^{2}, g_{3}^{1}, g_{3}^{2}, g_{3}^{3}, \ldots$. It is clear that

$$
\mathcal{L}^{1}\left(\left\{x \in[0,1]| | g_{n}^{k}(x) \mid>\varepsilon\right\}\right)=\mathcal{L}^{1}\left(\left[\frac{k-1}{n}, \frac{k}{n}\right]\right)=\frac{1}{n} \xrightarrow{n \rightarrow \infty} 0 .
$$

for any $\varepsilon>0$, which shows that the sequence converges to the function 0 in measure. On the other hand, given $x \in[0,1]$, for each $n \in \mathbb{Z}^{+}$we can choose $k \in\{1, \ldots, n\}$ such that $n x \in[k-1, k]$, which means that $g_{n}^{k}(x)=n$. This implies that the sequence $\left\{g_{n}^{k}(x)\right\}_{n, k}$ is unbounded.

