Exercise sheet 1

Exercise worth bonus points: Exercise 4

1. Determine the real and imaginary parts and write in polar form the following complex numbers:

(a)
$$\frac{\sqrt{21} - \sqrt{7} + i(\sqrt{21} + \sqrt{7})}{2 + 2i},$$

(b)
$$\left(\frac{\sqrt{2} + \sqrt{2}i}{\sqrt{2} - \sqrt{2}i}\right)^{2022},$$

(c)
$$(1+i)^{2n} + (1-i)^{2n} \text{ for } n \in \mathbf{Z}_{\geq 0}.$$

2. Let $a, b, c \in \mathbf{C}$. Find the solutions $z \in \mathbf{C}$ for the equation

$$az + b\bar{z} + c = 0.$$

When does it have exactly one solution?

- 3. For each of the following subsets of $\mathbf{C} = \mathbf{R}^2$, indicate whether they are (1) open, (2) closed, (3) compact, (4) connected:
 - (a) $[0,1] \times \{0,1\},\$
 - (b) $\{1/n \mid n \ge 1\},\$
 - (c) $\{(1+1/n)^n \mid n \ge 1\} \cup \{e\},\$
 - (d) $\{z \in \mathbf{C} \mid 2 < |z| \leq 3\}.$
- 4. (Worth bonus points) Let $\mathbf{H} = \{z \in \mathbf{C} \mid \operatorname{Im}(z) > 0\}$, and $\overline{\mathbf{H}} = \{z \in \mathbf{C} \mid \operatorname{Im}(z) < 0\}$.
 - (a) Explain why **H** is open in **C**.
 - (b) For a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with a, b, c and d in \mathbf{R} and $(c, d) \neq (0, 0)$, show that the function $f: \mathbf{H} \to \mathbf{C}$ such that

1

$$f(z) = \frac{az+b}{cz+d}$$

is well-defined.

Bitte wenden.

- (c) Compute Im(f(z)) and conclude that exactly one of the following conditions holds:
 - f is constant;
 - f maps **H** to **H**;
 - f maps **H** to $\overline{\mathbf{H}}$.

Find a simple necessary and sufficient condition on the matrix A for each of these cases to hold.

- (d) Show that f is holomorphic on \mathbf{H} and compute its derivative.
- (e) Show that if f is not constant, then f is either a bijection from **H** to **H** or a bijection from **H** to $\overline{\mathbf{H}}$; compute then the inverse bijection of f. What do you observe?