Exercise sheet 1

Exercise worth bonus points: Exercise 4

1. Determine the real and imaginary parts and write in polar form the following complex numbers:
(a) $\frac{\sqrt{21}-\sqrt{7}+i(\sqrt{21}+\sqrt{7})}{2+2 i}$,
(b) $\left(\frac{\sqrt{2}+\sqrt{2} i}{\sqrt{2}-\sqrt{2} i}\right)^{2022}$,
(c) $(1+i)^{2 n}+(1-i)^{2 n}$ for $n \in \mathbf{Z}_{\geqslant 0}$.
2. Let $a, b, c \in \mathbf{C}$. Find the solutions $z \in \mathbf{C}$ for the equation

$$
a z+b \bar{z}+c=0 .
$$

When does it have exactly one solution?
3. For each of the following subsets of $\mathbf{C}=\mathbf{R}^{2}$, indicate whether they are (1) open, (2) closed, (3) compact, (4) connected:
(a) $[0,1] \times\{0,1\}$,
(b) $\{1 / n \mid n \geqslant 1\}$,
(c) $\left\{(1+1 / n)^{n} \mid n \geqslant 1\right\} \cup\{e\}$,
(d) $\{z \in \mathbf{C}|2<|z| \leqslant 3\}$.
4. (Worth bonus points) Let $\mathbf{H}=\{z \in \mathbf{C} \mid \operatorname{Im}(z)>0\}$, and $\overline{\mathbf{H}}=\{z \in \mathbf{C} \mid$ $\operatorname{Im}(z)<0\}$.
(a) Explain why \mathbf{H} is open in \mathbf{C}.
(b) For a matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with a, b, c and d in \mathbf{R} and $(c, d) \neq(0,0)$, show that the function $f: \mathbf{H} \rightarrow \mathbf{C}$ such that

$$
f(z)=\frac{a z+b}{c z+d}
$$

is well-defined.
(c) Compute $\operatorname{Im}(f(z))$ and conclude that exactly one of the following conditions holds:

- f is constant;
- f maps \mathbf{H} to \mathbf{H};
- f maps \mathbf{H} to $\overline{\mathbf{H}}$.

Find a simple necessary and sufficient condition on the matrix A for each of these cases to hold.
(d) Show that f is holomorphic on \mathbf{H} and compute its derivative.
(e) Show that if f is not constant, then f is either a bijection from \mathbf{H} to \mathbf{H} or a bijection from \mathbf{H} to $\overline{\mathbf{H}}$; compute then the inverse bijection of f. What do you observe?

