Exercise sheet 10

Exercise worth bonus points: Exercise 5

- 1. Sketch the following open sets and show that they are simply connected:
 - (a) $U_1 = \{x + iy \in \mathbf{C} \mid \text{ if } x = 0, \text{ then } y > 0\}$
 - (b) $U_2 = \{x + iy \in \mathbf{C} \mid x > 0\}$
 - (c) $U_4 = \{x + iy \in \mathbb{C} \mid 0 < y < x^2 + 1\}.$
- 2. Sketch the following open sets and show that they are not simply connected:
 - (a) $U_5 = \{z \in \mathbf{C} \mid |z| > 1\}$
 - (b) $U_6 = \{ re^{i\theta} \in \mathbf{C} \mid 1/2 < r < 2 \}.$
- 3. An open set $D \subset \mathbb{C}$ is said to be *star shaped* when there exists a point $z_0 \in D$, such that for every $z \in D$ the straight line segment between z and z_0 is contained in D.
 - (a) Prove that a star shaped open set is connected.
 - (b) Prove that a star shaped open set is simply connected.
 - (c) Give an example of a simply connected open set that is not star shaped. (It is enough to make a picture and to explain why it works.)
- 4. Show that the Taylor expansion of the principal branch of the logarithm at $z_0 = 1$ is

$$\log(z) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{(z-1)^n}{n}.$$

- 5. Let U be a non empty simply-connected open set in C and $f \in \mathcal{H}(U)$. We assume that $f(z) \neq 0$ if $z \in U$. Fix $z_0 \in U$. Recall that for any $z \in U$, there exists a smooth curve γ_z joining z_0 to z (Exercise 1 of Exercise Sheet 3).
 - (a) Show that the function defined by

$$g(z) = \int_{\gamma_z} \frac{f'(w)}{f(w)} dw$$

is holomorphic on U with g'(z) = f'(z)/f(z) for all $z \in U$.

Bitte wenden.

- (b) Compute the derivative of $\exp(g(z))/f(z)$.
- (c) Deduce that there exists a function $\tilde{g} \in \mathcal{H}(U)$ such that $\exp(\tilde{g}) = f$. Is it unique?
- (d) Let $n \ge 1$. Show that there exists a function $h_n \in \mathcal{U}$ such that $h_n(z)^n = f(z)$ for all $z \in U$.