Prof. Emmanuel Kowalski

Exercise sheet 10

Exercise worth bonus points: Exercise 5

1. Sketch the following open sets and show that they are simply connected:
(a) $U_{1}=\{x+i y \in \mathbf{C} \mid$ if $x=0$, then $y>0\}$
(b) $U_{2}=\{x+i y \in \mathbf{C} \mid x>0\}$
(c) $U_{4}=\left\{x+i y \in \mathbf{C} \mid 0<y<x^{2}+1\right\}$.

Solution:
a)

b)

c)

(a) Observe that U_{1} is a rotation of $\pi / 2$ of the example seen in class $\mathbf{C} \backslash[0,+\infty)$ so one can adapt the proof seen in class to this example.
(b) U_{2} is convex, so it must be simply connected.
2. Sketch the following open sets and show that they are not simply connected:
(a) $U_{5}=\{z \in \mathbf{C}| | z \mid>1\}$
(b) $U_{6}=\left\{r e^{i \theta} \in \mathbf{C} \mid 1 / 2<r<2\right\}$.

Solution:
2. a)

b)

(a) Let $\gamma:[0,2 \pi] \rightarrow U_{5}, \gamma(t)=2 e^{i t}$ and observe that

$$
\int_{\gamma} \frac{1}{z} d z=2 \pi i \neq 0
$$

(b) Here the same holds for $\gamma:[0,2 \pi] \rightarrow U_{6}, \gamma(t)=e^{i t}$. That is,

$$
\int_{\gamma} \frac{1}{z} d z=2 \pi i \neq 0
$$

3. An open set $D \subset \mathbb{C}$ is said to be star shaped when there exists a point $z_{0} \in D$, such that for every $z \in D$ the straight line segment between z and z_{0} is contained in D.
(a) Prove that a star shaped open set is connected.
(b) Prove that a star shaped open set is simply connected.
(c) Give an example of a simply connected open set that is not star shaped. (It is enough to make a picture and to explain why it works.)

Solutions:

(a) We can assume, without loss of generality, that $z_{0}=0$. Thus, for every $z \in D$ we know that $t z \in D$, for $t \in[0,1]$.Suppose, by contradiction, that D is not connected, so we can write $D=U \cup V, U, V$ disjoint open and non-empty sets. Let $0 \in U$ and $z_{0} \in V$. Since U and V are open, we must have $t z \in U$ for $0 \leqslant t_{0}<1$ and $t z \in V$ for $t_{1}<t \leqslant 1$, which gives us a contradiction, since the whole line must be contained in D and we cannot split it into two different open sets.
(b) Let $\gamma:[a, b] \rightarrow D$ be a curve connecting α and β. We observe that γ is homotopic to the curve that connects α to zero and then zero to β. We construct the homotopy by pushing the first half of the curve to the segment α to 0 and the second half to the segment 0 to β as pictured in the image.

Since all curves with end points α and β are homotopic to the line that connected α to 0 and then 0 to β, we can conclude that any two such curves are homotopic.
(c) Let $U=\left\{r e^{i \theta}\right.$ for $\left.1<r<2,0 \leqslant 0<2 \pi-\frac{1}{100}\right\}$.

Observe that U is simply connected. Given any point in $z \in U$, we can consider $z \cdot e^{(\pi+\varepsilon) i}$ for a $|\varepsilon|<\frac{1}{100}$ and observe that these points cannot be connected by a line inside U, as illustrated in the image. Thus, U can't be star shaped.

4. Show that the Taylor expansion of the principal branch of the logarithm at $z_{0}=1$ is

$$
\log (z)=\sum_{n=1}^{+\infty}(-1)^{n+1} \frac{(z-1)^{n}}{n}
$$

Solution:

Observe that for $|z-1|<1$ the sum on the right hand side is holomorphic. We know that the derivative is given by

$$
\left(\sum_{n=1}^{+\infty}(-1)^{n+1} \frac{(z-1)^{n}}{n}\right)^{\prime}=\sum_{n=1}^{+\infty}(-1)^{n+1}(z-1)^{n}=\frac{1}{z} .
$$

So the derivaties coincide and thus

$$
\log (z)+c=\sum_{n=1}^{+\infty}(-1)^{n+1} \frac{(z-1)^{n}}{n}
$$

Since $\log (1)=0$ and $\sum_{n=1}^{+\infty}(-1)^{n+1} \frac{(1-1)^{n}}{n}=0$ we conclude that $c=0$ and the functions are equal.
5. Let U be a non empty simply-connected open set in \mathbf{C} and $f \in \mathcal{H}(U)$. We assume that $f(z) \neq 0$ if $z \in U$. Fix $z_{0} \in U$. Recall that for any $z \in U$, there exists a smooth curve γ_{z} joining z_{0} to z (Exercise 1 of Exercise Sheet 3).
(a) Show that the function defined by

$$
g(z)=\frac{1}{2 i \pi} \int_{\gamma_{z}} \frac{f^{\prime}(w)}{f(w)} d w
$$

is holomorphic on U with $g^{\prime}(z)=f^{\prime}(z) / f(z)$ for all $z \in U$.
(b) Compute the derivative of $\exp (g(z)) / f(z)$.
(c) Deduce that there exists a function $\widetilde{g} \in \mathcal{H}(U)$ such that $\exp (\widetilde{g})=f$. Is it unique?
(d) Let $n \geqslant 1$. Show that there exists a function $h_{n} \in \mathcal{U}$ such that $h_{n}(z)^{n}=f(z)$ for all $z \in U$.

Solution:

(a) First observe that the function is well-defined, since U is simply-connected and the integral doesn't depend on the chosen path. Observe that

$$
g(z)-g(z+h)=\int_{\eta} \frac{f^{\prime}(w)}{f(w)} d w
$$

where we can suppose that η is the straigh line that connects z to $z+h-$ which always exists for h small enough. We use continuity of $\frac{f^{\prime}}{f}$ and write

$$
\frac{f^{\prime}(w)}{f(w)}=\frac{f^{\prime}(z)}{f(z)}+\varphi(w)
$$

for $\varphi(w) \rightarrow 0$ as $w \rightarrow z$. Thus

$$
\lim _{h \rightarrow 0}\left(\frac{1}{h} \frac{f^{\prime}(z)}{f(z)} \int_{\eta} d z+\frac{1}{h} \int_{\eta} \varphi(w) d w\right)=\frac{f^{\prime}(z)}{f(z)} .
$$

(b)

$$
\begin{aligned}
\left(\frac{\exp (g(z))}{f(z)}\right)^{\prime} & =\frac{g^{\prime}(z) \exp (g(z)) f(z)-f^{\prime}(z) \exp (g(z))}{f(z)^{2}} \\
& =\frac{\frac{f^{\prime}(z)}{f(z)} \exp (g(z)) f(z)-f^{\prime}(z) \exp (g(z))}{f(z)^{2}}=0
\end{aligned}
$$

(c) Observe by the previous item that

$$
\frac{\exp (g(z))}{f(z)}=c
$$

for c a non zero constant. Thus we can take c_{0} such that $e^{c_{0}}=c$ and we conclude that $\tilde{g}(z)=g(z)-c_{0}$ satisfies $e^{\tilde{g}}=g$. Observe that we can sum to c_{0} any integer multiple of $2 \pi i$ and the result still works, so \tilde{g} is not unique.
(d) Here we can take $h_{n}(z)=\exp \left(\frac{1}{n} \tilde{g}(z)\right)$. From the previous items we have

$$
\left(h_{n}(z)\right)^{n}=\left(\exp \left(\frac{1}{n} \tilde{g}(z)\right)\right)^{n} \exp (\tilde{g}(z))=f(z)
$$

