Exercise sheet 11

Exercise worth bonus points: Exercise 2

1. Let U be an open set in \mathbf{C} and $z_{0} \in U, r>0$ such that $\bar{D}_{r}\left(z_{0}\right) \subset U$. Let $f \in \mathcal{H}(U)$ be such that $f(z) \neq 0$ for $z \in C_{r}\left(z_{0}\right)$. Show that for any $\varphi \in \mathcal{H}(U)$, we have

$$
\frac{1}{2 i \pi} \int_{C_{r}\left(z_{0}\right)} \frac{f^{\prime}(z)}{f(z)} \varphi(z) d z=\sum_{\substack{z_{0} \in D_{r}\left(z_{0}\right) \\ f\left(z_{0}\right)=0}} \operatorname{ord}_{z_{0}}(f) \varphi\left(z_{0}\right),
$$

where the sum is over the zeros of f in the disc $D_{r}\left(z_{0}\right)$, and the circle is taken counterclockwise.
2. Let U be a connected open subset in \mathbf{C} and $f: U \rightarrow \mathbf{C}$ a non-constant holomorphic function. Let $z_{0} \in U$ and let k be the order of the zero of the function $g(z)=$ $f(z)-f\left(z_{0}\right)$ at z_{0}.
(a) Explain why $1 \leqslant k<+\infty$, and why there exists a simply connected neighborhood V of z_{0}, contained in U, such that $f(z) \neq f\left(z_{0}\right)$ if $z \in V$ and $z \neq z_{0}$.
(b) Show that there exists a function $\varphi \in \mathcal{H}(V)$ such that $\varphi\left(z_{0}\right)=0$ and

$$
f(z)=f\left(z_{0}\right)+\varphi(z)^{k}
$$

for all $z \in V$. (Hint: start by writing $f(z)=f\left(z_{0}\right)+\left(z-z_{0}\right)^{k} g(z)$ for some holomorphic function g not vanishing on V.)
(c) Deduce that if $k \geqslant 2$, then f is not injective on V. (Hint: use the Open Image Theorem.)
3. Let $0 \leqslant s_{1}<r_{1}<r_{2}<s_{2}$ be real numbers, and let U be the set

$$
U=\left\{z \in \mathbf{C}\left|s_{1}<|z|<s_{2}\right\}\right.
$$

and

$$
V=\left\{z \in \mathbf{C}\left|r_{1}<|z|<r_{2}\right\} \subset U .\right.
$$

We denote by γ_{1}, γ_{2} the circles of radius r_{1} and r_{2}, respectively, centered at 0 , with counterclockwise orientation. Let $f \in \mathcal{H}(U)$.
(a) Show that the function g_{1} defined by

$$
g_{1}(z)=\frac{1}{2 i \pi} \int_{\gamma_{1}} \frac{f(w)}{w-z} d w
$$

is defined and holomorphic for $|z|>r_{1}$, and that the function g_{2} defined by

$$
g_{2}(z)=\frac{1}{2 i \pi} \int_{\gamma_{2}} \frac{f(w)}{w-z} d w
$$

is defined and holomorphic for $|z|<r_{2}$.
(b) Let γ be the closed curve obtained by going along the circle γ_{2}, starting at r_{2}, then taking the segment from r_{2} to r_{1}, then going along the circle γ_{1} with reversed (clockwise) orientation, and going along the segment from r_{1} to r_{2}. Sketch γ.
Let z_{0} be such that $r_{1}<\left|z_{0}\right|<r_{2}$, and let σ be a circle of radius $\delta>0$ small enough so that σ is contained in V. Explain why the closed curves γ and σ are homotopic in U (without giving a full proof, but sketching some steps of the homotopy).
(c) Show that $f(z)=g_{2}(z)-g_{1}(z)$ for $r_{1}<|z|<r_{2}$.
(d) Show that there exist complex numbers a_{n} for $n \in \mathbf{Z}$ such that the series

$$
\sum_{n \geqslant 1} a_{n} z^{n} \text { and } \sum_{n \geqslant 1} a_{-n} z^{-n}
$$

are both absolutely convergent for $r_{1}<|z|<r_{2}$, and satisfy

$$
f(z)=\sum_{n \in \mathbf{Z}} a_{n} z^{n}=\sum_{n \leqslant-1} a_{n} z^{n}+\sum_{n \geqslant 0} a_{n} z^{n}
$$

for $r_{1}<|z|<r_{2}$. (This is called the Laurent expansion of f around 0 .) (Hint: expand g_{2} in power series, and expand $g_{1}\left(z^{-1}\right)$ using geometric series.)

