Complex Analysis

Exercise sheet 11

Exercise worth bonus points: Exercise 2

1. Let U be an open set in **C** and $z_0 \in U$, r > 0 such that $\overline{D}_r(z_0) \subset U$. Let $f \in \mathcal{H}(U)$ be such that $f(z) \neq 0$ for $z \in C_r(z_0)$. Show that for any $\varphi \in \mathcal{H}(U)$, we have

$$\frac{1}{2i\pi} \int_{C_r(z_0)} \frac{f'(z)}{f(z)} \varphi(z) dz = \sum_{\substack{w \in D_r(z_0) \\ f(w) = 0}} \operatorname{ord}_w(f) \varphi(w),$$

where the sum is over the zeros of f in the disc $D_r(z_0)$, and the circle is taken counterclockwise.

Solution:

Observe that if w is a zero of order n of f we can write

$$f(z) = (z - w)^n g(z),$$

in a neighborhood of w where g is non vanishing. So,

$$\frac{f'(z)}{f(z)}\varphi(z) = \frac{n\varphi(z)}{z-w} + \frac{g'(z)}{g(z)}.$$

If $\varphi(w) = 0$ then w is not a pole of $\frac{f'(z)}{f(z)}\varphi(z)$ and $\operatorname{ord}_w(f)\varphi(w) = 0$. Otherwise, w is a pole of order 1 with residue $\operatorname{ord}_w(f)\varphi(w)$. So we can conclude, using the Residue Theorem, that

$$\frac{1}{2i\pi} \int_{C_r(z_0)} \frac{f'(z)}{f(z)} \varphi(z) dz = \sum_{\substack{w \in D_r(z_0) \\ f(w) = 0}} \operatorname{ord}_w(f) \varphi(w).$$

- 2. Let U be a connected open subset in C and $f: U \to C$ a non-constant holomorphic function. Let $z_0 \in U$ and let k be the order of the zero of the function $g(z) = f(z) f(z_0)$ at z_0 .
 - (a) Explain why $1 \leq k < +\infty$, and why there exists a simply connected neighborhood V of z_0 , contained in U, such that $f(z) \neq f(z_0)$ if $z \in V$ and $z \neq z_0$.

Bitte wenden.

(b) Show that there exists a function $\varphi \in \mathcal{H}(V)$ such that $\varphi(z_0) = 0$ and

$$f(z) = f(z_0) + \varphi(z)^k$$

for all $z \in V$. (Hint: start by writing $f(z) = f(z_0) + (z - z_0)^k g(z)$ for some holomorphic function g not vanishing on V.)

(c) Deduce that if $k \ge 2$, then f is not injective on V. (Hint: use the Open Image Theorem.)

Solution:

- (a) Since f is non-constant and U is connected we know that there can't exist a sequence of points $z_n \to z_0$ such that $f(z_n) = f(z_0)$. Thus, there exists a neighborhood of $z_0 V$ such that $f(z) \neq f(z_0), \forall z \in V \setminus \{z_0\}$.
- (b) Expanding in Taylor series we know that we can write

$$f(z) = f(z_0) + (z - z_0)^k g(z),$$

for a $k \ge 1$ and g a non-vanishing function in V. We can suppose without loss of generality that $V = B_r(z_0)$ for a r > 0, so V is simply connected. Since g is a non-vanishing function in a simply connected domain there exists a holormophic function h such that

$$g(z) = e^{h(z)}.$$

We take $\varphi(z) = e^{\frac{h(z)}{k}}(z - z_0).$

(c) Observe that $\varphi(z_0) = 0$. As a consequence of the Open Image Theorem, there exists a $\varepsilon > 0$ such that $B_{2\varepsilon}(0) \subset \varphi(V)$. So, there exists $w, \tilde{w} \in V$ such that

$$\varphi(w) = \varepsilon$$
$$\varphi(\tilde{w}) = \varepsilon e^{2\pi i/k}$$

Since k > 1 we have $\varepsilon \neq \varepsilon e^{2\pi i/k}$ and

$$\varphi(w)^k = \varepsilon^k = \varepsilon^k e^{2\pi i} = \varphi(\tilde{w})^k.$$

3. Let $0 \leq s_1 < r_1 < r_2 < s_2$ be real numbers, and let U be the set

$$U = \{ z \in \mathbf{C} \mid s_1 < |z| < s_2 \},\$$

and

$$V = \{ z \in \mathbf{C} \mid r_1 < |z| < r_2 \} \subset U.$$

We denote by γ_1 , γ_2 the circles of radius r_1 and r_2 , respectively, centered at 0, with counterclockwise orientation. Let $f \in \mathcal{H}(U)$.

(a) Show that the function g_1 defined by

$$g_1(z) = \frac{1}{2i\pi} \int_{\gamma_1} \frac{f(w)}{w-z} dw$$

is defined and holomorphic for $|z| > r_1$, and that the function g_2 defined by

$$g_2(z) = \frac{1}{2i\pi} \int_{\gamma_2} \frac{f(w)}{w-z} dw$$

is defined and holomorphic for $|z| < r_2$.

(b) Let γ be the closed curve obtained by going along the circle γ_2 , starting at r_2 , then taking the segment from r_2 to r_1 , then going along the circle γ_1 with reversed (clockwise) orientation, and going along the segment from r_1 to r_2 . Sketch γ .

Let z_0 be such that $r_1 < |z_0| < r_2$, and let σ be a circle of radius $\delta > 0$ small enough so that σ is contained in V. Explain why the closed curves γ and σ are homotopic in U (without giving a full proof, but sketching some steps of the homotopy).

- (c) Show that $f(z) = g_2(z) g_1(z)$ for $r_1 < |z| < r_2$.
- (d) Show that there exist complex numbers a_n for $n \in \mathbb{Z}$ such that the series

$$\sum_{n \ge 1} a_n z^n \text{ and } \sum_{n \ge 1} a_{-n} z^{-n}$$

are both absolutely convergent for $r_1 < |z| < r_2$, and satisfy

$$f(z) = \sum_{n \in \mathbf{Z}} a_n z^n = \sum_{n \leqslant -1} a_n z^n + \sum_{n \ge 0} a_n z^n$$

for $r_1 < |z| < r_2$. (This is called the *Laurent expansion* of f around 0.)

(Hint: expand g_2 in power series, and expand $g_1(z^{-1})$ using geometric series.)

Solution:

(a) We first observe that g_1 is continuous: if $z_k \to z, z_k, z \in \{z : |z| > r_1\}$ then

$$\lim_{k \to \infty} g_1(z_k) = \lim_{k \to \infty} \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(w)}{w - z_k} dw$$
$$= \frac{1}{2\pi i} \int_{\gamma_1} \lim_{k \to \infty} \frac{f(w)}{w - z_k} dw = g_1(z),$$

Bitte wenden.

since f(w)/(w-z) is continuous in $\{z : |z| > r_1\}$. We use that this function is also holomorphic in this domain, so given any triangle Δ in $\{z : |z| > r_1\}$:

$$\int_{\Delta} g_1(z) dz = \frac{1}{2\pi i} \int_{\gamma_1} f(w) \int_{\Delta} \frac{1}{w-z} dz dw = 0,$$

so it follows that g_1 is holomorphic by Morera's Theorem. The proof that g_2 is holomorphic follows similarly.

(b)

(c) Using the previous result and Cauchy's Theorem we get

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw = \frac{1}{2\pi i} \int_{C_{\delta}(z)} \frac{f(w)}{w-z} dw = f(z).$$

To conclude just observe that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw = g_2(z) - g_1(z).$$

(d) For $|z| < r_2$ we can expand g_2 in power series:

$$g_2(z) = \sum_{n \ge 0} a_n z^n.$$

For g_1 we can write:

$$g_{1}(z) = \frac{1}{2\pi i} \int_{\gamma_{1}} \frac{f(w)}{w - z} dw = -\frac{1}{2\pi i} \int_{\gamma_{1}} \frac{f(w)}{z} \cdot \frac{1}{1 - \frac{w}{z}} dw$$
$$= -\frac{1}{2\pi i} \int_{\gamma_{1}} \frac{f(w)}{z} \sum_{n=0}^{+\infty} \left(\frac{w}{z}\right)^{n} dw$$
$$= -\sum_{k=-1}^{-\infty} \left(\frac{1}{2\pi i} \int_{\gamma_{1}} \frac{f(w)}{w^{k+1}} dw\right) z^{k} = \sum_{k=-1}^{-\infty} a_{k} z^{k}.$$