Exercise sheet 12

Exercise worth bonus points: Exercise 5

1. Let $f: U \rightarrow V$ be a conformal equivalence. Show that U is simply connected if and only if V is simply connected.
2. Show that the function $f(z)=(1+z) /(1-z)$ gives a conformal equivalence $U \rightarrow V$, where

$$
\begin{aligned}
U & =\left\{z=x+i y \mid y>0 \text { and } x^{2}+y^{2}<1\right\}, \\
V & =\{z=x+i y \mid x>0 \text { and } y>0\} .
\end{aligned}
$$

3. Let $\alpha \in] 0,2[$ be a real number.
(a) Show that the function $f(z)=z^{\alpha}=\exp (\alpha \log (z))$, where \log is the principal branch of the logarithm, is a conformal map from the upper half-plane \mathbf{H} to \mathbf{C}.
(b) Determine the image $f(\mathbf{H})$.
4. We define $f(z)=-\frac{1}{2}(z+1 / z)$, which is a meromorphic function on \mathbf{C}.
(a) Show that for a given $w \in \mathbf{C}$, the equation $f(z)=w$ has two complex solutions with multiplicity, and determine when they are distinct.
(b) Show that if $w \neq \pm 1$, then the equation $f(z)=w$ has two distict roots in C.
(c) Deduce that f defines a conformal map from

$$
U=\left\{z=x+i y \mid y>0 \text { and } x^{2}+y^{2}<1\right\}
$$

$$
\text { to } V=\mathbf{H}
$$

5. Recall from Exercise 4 of Exercise Sheet 1 that if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a matrix with real coefficients and determinant $a d-b c=1$, then

$$
f_{A}(z)=\frac{a z+b}{c z+d}
$$

is a holomorphic bijection from \mathbf{H} to \mathbf{H}, so it is an automorphism of \mathbf{H}.
(a) Show that $f_{A}(i)=i$ if and only if A is of the form

$$
A=\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

for some $\theta \in \mathbf{R}$.
(b) Let $z_{0} \in \mathbf{H}$. Find a matrix B such that $f_{B}(i)=z_{0}$.
(c) Let f be an automorphism of \mathbf{H}. Show that there exists A such that $f \circ f_{A}(i)=$ i.
(d) Deduce that there exists a matrix C such that $f=f_{C}$.

