Exercise sheet 12

Exercise worth bonus points: Exercise 5

1. Let $f: U \rightarrow V$ be a conformal equivalence. Show that U is simply connected if and only if V is simply connected.

Solution:

Observe that it is enough to show that if U is simply connected then V is also simply connected, and the other direction follows because f^{-1} is also a conformal equivalence.
Let $\gamma_{1}, \gamma_{2}:[a, b] \rightarrow V$ be curves with same endpoints. Observe that $f^{-1} \circ \gamma_{1}$ and $f^{-1} \circ \gamma_{2}$ are curves in U with same endpoints. Since U is simply connected, there exists a homotopy H between them:

$$
\begin{aligned}
& H:[a, b] \times[0,1] \rightarrow U \\
& H(a, t)=H(a, 0), H(b, t)=H(b, 0) \\
& H(x, 0)=f^{-1} \circ \gamma_{1}(x) H(x, 1)=f^{-1} \circ \gamma_{2}(x) .
\end{aligned}
$$

We define a homotopy between γ_{1} and γ_{2} as follows:

$$
\begin{aligned}
& \tilde{H}:[a, b] \times[0,1] \rightarrow V \\
& \tilde{H}(x, t)=f(H(x, t)) .
\end{aligned}
$$

Observe that \tilde{H} is in fact a homotopy:

$$
\begin{aligned}
\tilde{H}(a, t) & =f(H(a, t))=f\left(f^{-1} \circ \gamma_{1}(a)\right)=\gamma_{1}(a) \\
\tilde{H}(b, t) & =f(H(b, t))=f\left(f^{-1} \circ \gamma_{1}(b)\right)=\gamma_{1}(b) \\
\tilde{H}(x, 0) & =f\left(f^{-1} \circ \gamma_{1}(x)\right)=\gamma_{1}(x) \\
\tilde{H}(x, 1) & =f\left(f^{-1} \circ \gamma_{2}(x)\right)=\gamma_{2}(x) .
\end{aligned}
$$

2. Show that the function $f(z)=(1+z) /(1-z)$ gives a conformal equivalence $U \rightarrow V$, where

$$
\begin{aligned}
U & =\left\{z=x+i y \mid y>0 \text { and } x^{2}+y^{2}<1\right\}, \\
V & =\{z=x+i y \mid x>0 \text { and } y>0\} .
\end{aligned}
$$

Solution:

It is clear that f is holomorphic in U. If we write $z=x+i y$ we have

$$
f(z)=\frac{1-\left(x^{2}+y^{2}\right)}{(1-x)^{2}+y^{2}}+i \frac{2 y}{(1-x)^{2}+y^{2}},
$$

so we see that f maps U in the first quadrant V.
Moreover, the inverse map is given by $g(w)=\frac{w-1}{w+1}$. It holds that $|w-1|>|w+1|$ for all $w \in V$, since the distance of any point in V to +1 is smaller than the distance to -1 . To conclude we just need to observe that the imaginary part of $g(w)$ is positive. It follows from

$$
\operatorname{Im}\left(\frac{w-1}{w+1}\right)=\frac{2 \operatorname{Im}(w)}{|w+1|^{2}}
$$

3. Let $\alpha \in] 0,2[$ be a real number.
(a) Show that the function $f(z)=z^{\alpha}=\exp (\alpha \log (z))$, where \log is the principal branch of the logarithm, is a conformal map from the upper half-plane \mathbf{H} to \mathbf{C}.
(b) Determine the image $f(\mathbf{H})$.

Solution:

(a) It is clear that f is holomorphic. We must show that it is injective. For $z \in \mathbf{H}$ we can write $z=r e^{i \theta}$, for $r>0$ and $0<\theta<\pi$ and using the principal branch of the logarithm we get

$$
f(z)=r^{\alpha} e^{i \theta \alpha} .
$$

Let $z^{\prime}=r^{\prime} e^{i \theta^{\prime}}$ and suppose that $f(z)=f\left(z^{\prime}\right)$. We get

$$
r^{\prime \alpha} e^{i \theta^{\prime} \alpha}=r^{\alpha} e^{i \theta \alpha}
$$

so

$$
\begin{aligned}
& r=r^{\prime} \\
& \alpha \theta=\alpha \theta^{\prime}+2 \pi k,
\end{aligned}
$$

$k \in \mathbf{Z}$. Since $0<\alpha \theta, \alpha \theta^{\prime}<2 \pi$ we get that $k=0$ and $\theta=\theta^{\prime}$ and $z=z^{\prime}$.
(b) Observe that f takes the upper half plane to a sector $S=\{w \in \mathbf{C}: 0<$ $\arg (w)<\alpha \pi\}$.
4. We define $f(z)=-\frac{1}{2}(z+1 / z)$, which is a meromorphic function on \mathbf{C}.
(a) Show that for a given $w \in \mathbf{C}$, the equation $f(z)=w$ has two complex solutions with multiplicity, and determine when they are distinct.
(b) Show that if $w \neq \pm 1$, then the equation $f(z)=w$ has two distict roots in C.
(c) Deduce that f defines a conformal map from

$$
U=\left\{z=x+i y \mid y>0 \text { and } x^{2}+y^{2}<1\right\}
$$

to $V=\mathbf{H}$.

Solution:

(a) Observe that we can rewrite the equality $f(z)=w$ as $z^{2}+2 w z+1=0$ and we know that the polynomial of degree 2 has two solutions with multiplicity. We have one solution with multiplicity two if an only if we can rewrite $z^{2}+$ $2 w z+1=\left(z-z^{\prime}\right)^{2}$, and comparing the coefficients we conclude that this only happens when $w= \pm 1$.
(b) Follows from the item above.
(c) Observe that f maps U to V :

$$
\operatorname{Im}\left(-\frac{1}{2}\left(z+\frac{1}{z}\right)\right)=-\frac{1}{2}\left(\operatorname{Im}(z)-\frac{\operatorname{Im}(z)}{|z|^{2}}\right)>0
$$

since $|z|^{2}<1$ and $\operatorname{Im}(z)>0$. If $w \in \mathbf{H}$ then $f(z)=w$ has two distict solutions. Suppose one solution is in U. Then the other solution is given by $1 / z$, which is not in U since $\left|\frac{1}{z}\right|>1$. Thus, we conclude that f is injective from U to V.
5. Recall from Exercise 4 of Exercise Sheet 1 that if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a matrix with real coefficients and determinant $a d-b c=1$, then

$$
f_{A}(z)=\frac{a z+b}{c z+d}
$$

is a holomorphic bijection from \mathbf{H} to \mathbf{H}, so it is an automorphism of \mathbf{H}.
(a) Show that $f_{A}(i)=i$ if and only if A is of the form

$$
A=\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

for some $\theta \in \mathbf{R}$.
(b) Let $z_{0} \in \mathbf{H}$. Find a matrix B such that $f_{B}(i)=z_{0}$.
(c) Let f be an automorphism of \mathbf{H}. Show that there exists A such that $f \circ f_{A}(i)=$ i.
(d) Deduce that there exists a matrix C such that $f=f_{C}$.

Solution:

(a) If we write $f_{A}(i)=i$ and compare the coefficients we get

$$
\begin{aligned}
a & =d \\
b & =-c .
\end{aligned}
$$

Since $\operatorname{det}(A)=1$ we have $a^{2}+b^{2}=1$ so we can write $a=\cos (\theta)$ and $b=\sin (\theta)$.
(b) We can do as in the previous item: writing $z_{0}=x_{0}+i y_{0}$ we get

$$
\begin{aligned}
& \quad b=d x_{0}-c y_{0} \\
& a=c x_{0}+d y_{0} \\
& a d-b c=1,
\end{aligned}
$$

so we have three equations and four variables, and thus there exists solutions a, b, c, d satisfying what we want.
(c) If f is an automorphism of \mathbf{H} it there exists $z_{0} \in \mathbf{H}$ such that $f\left(z_{0}\right)=i$. Let A be as in the previous item and observe that

$$
f \circ f_{A}(i)=f\left(z_{0}\right)=i
$$

(d) Consider the map $f: \mathbf{H} \rightarrow\{z \in \mathbf{C}:|z|<1\}$

$$
F(z)=i \frac{z-i}{z+i}
$$

From Riemman Mapping Theorem we know that this is the unique conformal equivalence between \mathbf{H} and the disk such that $F(i)=0$ and $F^{\prime}(i)>0$.
Observe that $g=\left(e^{i \beta} F\right) \circ f \circ f_{A}$ is a conformal equivalence between \mathbf{H} and the disk. It holds that $g(i)=0$ and we can choose β so that $g^{\prime}(i)>0$. Using the uniqueness of F we can write f as a Moebius Transform.

