Exercise sheet 2

Exercise worth bonus points: Exercises 3 and 5

1. Let U and V be open subsets of \mathbf{C}. Let $f \in \mathcal{H}(U)$ and $g \in \mathcal{H}(V)$ be holomorphic functions. If $f(U) \subset V$, show that the function from U to \mathbf{C} defined by $F(z)=$ $g(f(z))$ is holomorphic on U and that

$$
F^{\prime}(z)=f^{\prime}(z) g^{\prime}(f(z))
$$

for all $z \in U$.
2. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a \mathbb{R}-linear map induced by the matrix

$$
A=\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]
$$

That is, for $z=x+i y$, we have $f(x+i y)=\alpha x+\beta y+i(\gamma x+\delta y)$. Find two complex numbers $a, b \in \mathbb{C}$, so that for every $z \in \mathbb{C}$ it holds: $f(z)=a z+b \bar{z}$.
3. Let U be open in \mathbf{C} and let $f \in \mathcal{H}(U)$ be a holomorphic function on U. Write $f=u+i v$ with u, v real-valued. If u and v are of class C^{2} on U, show that

$$
\Delta(u)=\Delta(v)=0,
$$

where $\Delta=\partial_{x}^{2}+\partial_{y}^{2}$ is the Laplace operator.
4. Let $u: \mathbf{C} \rightarrow \mathbf{R}$ be a real-valued function on \mathbf{C}.
(a) Show that there is at most one holomorphic function $f: \mathbf{C} \rightarrow \mathbf{C}$ such that $\operatorname{Re}(f)=u$ and $\operatorname{Im}(f(0))=0$.
(b) Give an example of a C^{∞} function u such that there is no f as in the previous item.
5. (a) Let $n \in \mathbf{Z}$. Compute the integrals

$$
\int_{\gamma} z^{n} d z
$$

where γ is a circle centered at 0 with positive radius, taken counterclockwise.
(b) Let a and b be complex numbers with $|a|<|b|$. Compute

$$
\int_{\gamma} \frac{1}{(z-a)(z-b)} d z
$$

where γ is a circle of radius $r \in(|a|,|b|)$ around 0 , with counterclockwise orientation.

