Exercise sheet 3

Exercise worth bonus points: Exercise 3

1. Let U be a non-empty connected open set in \mathbf{C} and let $z_{0} \in U$. Define a function $f: U \rightarrow\{0,1\}$ by $f(z)= \begin{cases}1 & \text { if there exists a (piecewise smooth) curve in } U \text { from } z_{0} \text { to } z \\ 0 & \text { otherwise. }\end{cases}$

Intuitively, $f(z)=1$ means that z can be joined to z_{0} by a curve.
(a) Show that the set of $z \in U$ with $f(z)=1$ is open.
(b) Let $\left(z_{n}\right)$ be a sequence in U with $f\left(z_{n}\right)=1$ for all n, and assume that $\left(z_{n}\right)$ converges to $w \in U$. Show that $f(w)=1$. (Hint: find a small open disc D around w contained in U and some n_{0} such that $z_{n_{0}} \in D$, then combine curves.)
(c) Deduce that f is continuous and that $f(z)=1$ for all $z \in U$.
2. Compute the line integrals $\int_{\gamma} f(x) d z$ for the following functions f and curves $\gamma:[0,1] \rightarrow \mathbb{C}:$
(a) $f(z)=z^{2}$ and $\gamma(t)=r e^{\pi i t}, r>0$.
(b) $f(z)=\bar{z}$ and $\gamma(t)=\frac{1}{t+1}+i t^{2}$.
(c) $f(z)=\sin (\operatorname{Re}(z))$ and $\gamma(t)=t+i \sin (t)$.
(d) $f(z)=z^{-n}$ and $\gamma(t)=e^{2 \pi i t}$.
3. (a) Show that the function $f(z)=e^{i z^{2}}$ is holomorphic on \mathbf{C}.
(b) Let $R>0$ be a real number. Sketch the curve γ consisting of the segment $[0, R] \subset \mathbf{C}$ followed by the arc $t \mapsto R e^{i t}$ for $0 \leqslant t \leqslant \pi / 4$, and then the segment from $R e^{i \pi / 4}$ to 0 .
(c) Compute $\int_{\gamma} f(z) d z$.
(d) Deduce that

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\frac{\sqrt{2 \pi}}{4}
$$

(where the improper Riemann integrals are defined as the limit as $R \rightarrow+\infty$ of the integral over $[0, R]$).
4. (a) Explain why the function f defined by $f(x)=\sin (x) / x$ for a real number $x \neq 0$ and $f(0)=1$ is continuous.
(b) Show that

$$
\int_{0}^{\infty} \frac{\sin (x)}{x} d x=\lim _{R \rightarrow+\infty} \frac{1}{2 i} \int_{-R}^{R} \frac{e^{i x}-1}{x} d x
$$

(c) Let $R>0$ be large and $\varepsilon>0$ be small. Explain why

$$
\int_{\gamma} \frac{e^{i z}-1}{z} d z=0
$$

where γ is the "indented semicircle" curve described in the picture below.

(d) Deduce the value of

$$
\int_{0}^{\infty} \frac{\sin (x)}{x} d x
$$

