D-MATH

Exercise sheet 3

Exercise worth bonus points: Exercise 3

1. Let U be a non-empty *connected* open set in C and let $z_0 \in U$. Define a function $f: U \to \{0, 1\}$ by

 $f(z) = \begin{cases} 1 & \text{if there exists a (piecewise smooth) curve in } U \text{ from } z_0 \text{ to } z \\ 0 & \text{otherwise.} \end{cases}$

Intuitively, f(z) = 1 means that z can be joined to z_0 by a curve.

- (a) Show that the set of $z \in U$ with f(z) = 1 is open.
- (b) Let (z_n) be a sequence in U with $f(z_n) = 1$ for all n, and assume that (z_n) converges to $w \in U$. Show that f(w) = 1. (Hint: find a small open disc D around w contained in U and some n_0 such that $z_{n_0} \in D$, then combine curves.)
- (c) Deduce that f is continuous and that f(z) = 1 for all $z \in U$.
- 2. Compute the line integrals $\int_{\gamma} f(x) dz$ for the following functions f and curves $\gamma: [0,1] \to \mathbb{C}:$
 - (a) $f(z) = z^2$ and $\gamma(t) = re^{\pi i t}, r > 0.$
 - (b) $f(z) = \overline{z}$ and $\gamma(t) = \frac{1}{t+1} + it^2$.
 - (c) $f(z) = \sin(\operatorname{Re}(z))$ and $\gamma(t) = t + i\sin(t)$.
 - (d) $f(z) = z^{-n}$ and $\gamma(t) = e^{2\pi i t}$.
- 3. (a) Show that the function $f(z) = e^{iz^2}$ is holomorphic on **C**.
 - (b) Let R > 0 be a real number. Sketch the curve γ consisting of the segment $[0,R] \subset \mathbf{C}$ followed by the arc $t \mapsto Re^{it}$ for $0 \leq t \leq \pi/4$, and then the segment from $Re^{i\pi/4}$ to 0.
 - (c) Compute $\int_{\gamma} f(z) dz$.
 - (d) Deduce that

$$\int_0^\infty \sin(x^2) dx = \int_0^\infty \cos(x^2) dx = \frac{\sqrt{2\pi}}{4}$$

(where the improper Riemann integrals are defined as the limit as $R \to +\infty$ of the integral over [0, R]).

Bitte wenden.

- 4. (a) Explain why the function f defined by $f(x) = \sin(x)/x$ for a real number $x \neq 0$ and f(0) = 1 is continuous.
 - (b) Show that

$$\int_{0}^{\infty} \frac{\sin(x)}{x} dx = \lim_{R \to +\infty} \frac{1}{2i} \int_{-R}^{R} \frac{e^{ix} - 1}{x} dx.$$

(c) Let R > 0 be large and $\varepsilon > 0$ be small. Explain why

$$\int_{\gamma} \frac{e^{iz} - 1}{z} dz = 0,$$

where γ is the "indented semicircle" curve described in the picture below.

(d) Deduce the value of

$$\int_0^\infty \frac{\sin(x)}{x} dx.$$