Exercise sheet 4

Exercise worth bonus points: Exercises 2 and 4

1. (Comparison between vector calculus from Analysis II and Complex Analysis) Let $U \subset \mathbb{R}^{2}$ be an open set, $V=\left(V_{1}, V_{2}\right): U \rightarrow \mathbb{R}^{2}$ a C^{1} vector field on $U, \gamma:[a, b] \rightarrow U$ a C^{1} curve and $h: U \rightarrow \mathbb{R}$ a C^{1} function.
We recall the following definitions from Analysis II:

$$
\begin{aligned}
\operatorname{div} V & =\partial_{x} V_{1}+\partial_{y} V_{2} & \operatorname{rot} V & =\partial_{x} V_{2}-\partial_{y} V_{1} \\
\operatorname{grad} h & =\left(\partial_{x} h, \partial_{y} h\right) & \int_{\gamma} V \cdot d \mathbf{s} & =\int_{a}^{b} V(\gamma(t)) \cdot \dot{\gamma}(t) d t
\end{aligned}
$$

Now let $f=u+i v: U \rightarrow \mathbb{C}$ be a complex valued continuous function. We define the following vector fields:

$$
V_{f}:=(u,-v) \quad W_{f}:=(v, u)
$$

One observes that we can obtain W_{f} from V_{f} by a $\pi / 2$-rotation.
Prove the following assertions:
(a) Assume that f is differentiable and of class C^{1} in the sense of Analysis II. Then we have

$$
\begin{aligned}
f \text { holomorphic } & \Leftrightarrow \operatorname{div} V_{f}=\operatorname{rot} V_{f}=0 \Leftrightarrow \operatorname{div} W_{f}=\operatorname{rot} W_{f}=0 \\
& \Leftrightarrow \operatorname{div} V_{f}=\operatorname{div} W_{f}=0 \Leftrightarrow \operatorname{rot} V_{f}=\operatorname{rot} W_{f}=0 .
\end{aligned}
$$

(b) The complex line integral can be expressed as the following real line integral:

$$
\int_{\gamma} f(z) d z=\int_{\gamma} V_{f} \cdot d \mathbf{s}+i \int_{\gamma} W_{f} \cdot d \mathbf{s}
$$

(c) If f is holomorphic on U and $g=f^{\prime}$, then

$$
V_{g}=\operatorname{grad} u \quad W_{g}=\operatorname{grad} v
$$

2. Let $f \in \mathcal{H}(\mathbf{C})$ be a holomorphic function on \mathbf{C}. Suppose that there exists an integer $d \geqslant 1$ and a real number $C \geqslant 0$ such that

$$
|f(z)| \leqslant C(1+|z|)^{d}
$$

for all $z \in \mathbf{C}$. Prove that f is a polynonial of degree at most d.
3. Let U be a connected open set in \mathbf{C} and let f be a holomorphic function on U such that $f^{\prime}=0$.
(a) Show that f is constant.
(b) Explain why it is important to assume that U is connected.
4. Let U be the open set of $z \in \mathbf{C}$ such that $z \neq 2 i k \pi$ for some non-zero $k \in \mathbf{Z}$. Let $f(z)=z /\left(e^{z}-1\right)$ for $z \in U$ non-zero and $f(0)=1$.
(a) Show that $f \in \mathcal{H}(U)$. (Hint: to show that f is holomorphic close to 0 , express $e^{z}-1=z g(z)$ where g is holomorphic and non-zero at 0$)$.
We denote by

$$
\sum_{n=0}^{+\infty} \frac{b_{n}}{n!} z^{n}
$$

the Taylor series for f at 0 .
(b) Compute $b_{0}, b_{1}, b_{2}, b_{3}$.
(c) Prove that the radius of convergence of the Taylor series is 2π.
(d) For any r with $r>2 \pi$, deduce that there are infinitely many integers n such that $\left|b_{n}\right| \geqslant n!/ r^{n}$.
5. Compute the radius of convergence of the Taylor series of the function

$$
f(z)=\frac{1}{z^{3}+2}
$$

at $z_{0}=0$ and at $z_{0}=1$.
6. Let U be a non-empty connected open set and let f, g be holomorphic functions on U. If $f g=0$, then either $f=0$ or $g=0$.

