Exercise sheet 5

Exercise worth bonus points: Exercise 1

1. For $r>0$, let U_{r} be the open set in \mathbf{C} consisting of complex numbers z such that $\operatorname{Re}(z)>r$ and $-z$ is not a non-negative integer (so $z=0,-1,-2, \ldots$ are not in any U_{r}). Let U be the open set of those $z \in \mathbf{C}$ such that $-z$ is not a non-negative integer (so all z except $0,-1, \ldots$, are in U).
(a) Show that the function defined by the improper Riemann integral

$$
\Gamma(z)=\int_{0}^{+\infty} e^{-t} t^{z-1} d t
$$

is well-defined for $z \in U_{1}$. (Here $t^{z-1}=\exp ((z-1) \log t)$ for $t>0$ and is defined to be 0 for $t=0$.)
(b) Show that $\Gamma \in \mathcal{H}\left(U_{1}\right)$. (Hint: first prove that for each integer $n \geqslant 1$, the formula

$$
\Gamma_{n}(z)=\int_{0}^{n} e^{-t} t^{z-1} d t
$$

defines a function holomorphic in U_{1}, and then prove that for any real number $A>0$, the sequence $\left(\Gamma_{n}\right)$ converges to Γ uniformly for z such that $1 \leqslant$ $\operatorname{Re}(z) \leqslant A$.)
(c) Show that $\Gamma(z+1)=z \Gamma(z)$ for $z \in U_{1}$.
(d) Deduce that there exists a unique holomorphic function on U_{0} which coincides with Γ on U_{1}.
(e) Deduce further that there exists a unique holomorphic function on U which coincides with Γ on U_{1}.
(f) Explain how one could compute $\Gamma(-2+3 i)$ by reducing to approximating an integral.
2. Show that the following functions exist and are holomorphic on the indicated open
sets; furthermore, give a similar expression for their derivatives:

$$
\begin{aligned}
& f_{1}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{1-z^{n}} \quad \text { on } D_{1}(0) \\
& f_{2}(z)=\int_{0}^{1}(1-t z)^{4} e^{t z} d t \quad \text { on } \mathbf{C} \\
& f_{3}(z)=\sum_{n=0}^{+\infty} n^{2} \exp \left(2 i \pi n^{3} z\right) \quad \text { on }\{z \in \mathbf{C} \mid \operatorname{Im}(z)>0\} .
\end{aligned}
$$

3. Let $g:[0,2 \pi] \rightarrow \mathbf{C}$ be a continuous function such that $g(0)=g(2 \pi)$. Let γ be the unit circle in the \mathbf{C} with the counterclockwise orientation. Define a function \widetilde{g} on γ by

$$
\widetilde{g}\left(e^{i \theta}\right)=g(\theta)
$$

for $\theta \in[0,2 \pi]$.
(a) Show that the line integral

$$
\frac{1}{2 i \pi} \int_{\gamma} \frac{\widetilde{g}(w)}{w-z} d w
$$

exists for all $z \in D_{1}(0)$.
(b) Show that

$$
f(z)=\frac{1}{2 i \pi} \int_{\gamma} \frac{\widetilde{g}(w)}{w-z} d w
$$

defines a holomorphic function on $D_{1}(0)$.
(c) Compute the derivative of f as another line integral along γ.
4. (a) Let $f(z):=\sin \left(z^{2}\right)$. Find the zeros $z_{0} \in \mathbb{C}$ of f and their orders.
(b) Let $p(z):=1+a_{1} z+\ldots+a_{n} z^{n}$ be a polynomial. Find the order of the zero $z_{0}=0$ of the function $f(z):=e^{z}-p(z)$ depending on the polynomial $p(z)$.

