Exercise sheet 6

Exercise worth bonus points: Exercise 5

1. (a) Let $\alpha \in \mathbf{C}$ be a fixed non-zero complex number. Construct a non-constant function $f \in \mathcal{H}(\mathbf{C})$ such that $f(z+\alpha)=f(z)$ for all $z \in \mathbf{C}$.
Hint: consider first the case $\alpha=2 i \pi$.
(b) Show that if $f \in \mathcal{H}(\mathbf{C})$ satisfies the relations

$$
\begin{aligned}
f(z+1) & =f(z) \\
f(z+i) & =f(z)
\end{aligned}
$$

for all $z \in \mathbf{C}$, then f is constant.
2. Let $U \subset \mathbf{C}$ be an open set and $z_{0} \in U$. Let f be holomorphic on U outside z_{0} with a pole of order $k \geqslant 1$ at z_{0}. Define

$$
g(z)=\left(z-z_{0}\right)^{k} f(z)
$$

for $z \neq z_{0}$.
(a) Show that z_{0} is a removable singularity of the function g.
(b) Show that

$$
\operatorname{res}_{z_{0}}(f)=\lim _{\substack{z \rightarrow z_{0} \\ z \neq z_{0}}} \frac{1}{(k-1)!} g^{(k-1)}(z)
$$

3. Show that the following line integrals exist, and compute their values, where the curves are always oriented counterclockwise:
(a)

$$
\int_{\gamma} \frac{\cos (z)}{z^{2}\left(z^{2}-8\right)} d z, \quad \gamma \text { the boundary of the square }[-1,1] \times[-1,1]
$$

(b)

$$
\int_{\gamma} \frac{e^{z}}{e^{2 z}-1} d z, \quad \gamma \text { the boundary of the triangle with vertices }-1-i, 4 i, 3 .
$$

Hint: the previous exercise can be used to compute residues.
4. Show that the following functions are holomorphic in \mathbf{C} except for isolated singularities. Show that these singularities are poles and determine their orders and residues.
(a) $f(z)=\frac{1}{\cos \left(z^{2}\right)}$
(b) $f(z)=\frac{z}{e^{z}-1}$.
5. Consider the holomorphic function Γ defined in Exercise 1 of Exercise sheet 5 . We showed that it is holomorphic on

$$
U=\mathbf{C}-\{0,-1,-2, \ldots\}
$$

(a) Show that the function $f:[0,1] \rightarrow \mathbf{R}$ defined by $f(t)=-1$ if $t=0$ and $f(t)=\left(e^{-t}-1\right) / t$ if $0<t \leqslant 1$ is continuous.
(b) Show that the function

$$
g(z)=\int_{0}^{1} f(t) t^{z} d t
$$

is defined and holomorphic for $\operatorname{Re}(z)>0$.
(c) Show that for $\operatorname{Re}(z)>1$, we have

$$
\Gamma(z)=\frac{1}{z}+g(z)+\int_{1}^{+\infty} e^{-t} t^{z-1} d t
$$

(d) Deduce that Γ has a pole at $z=0$ with residue 1 .
(e) Let $k \geqslant 0$ be an integer. Show that Γ has a simple pole at $-k$ with residue

$$
\operatorname{res}_{-k}(\Gamma)=\frac{(-1)^{k}}{k!}
$$

Hint: argue by induction using the relation $\Gamma(z+1)=z \Gamma(z)$.

