D-MATH Prof. Emmanuel Kowalski

Exercise sheet 6

Exercise worth bonus points: Exercise 5

- 1. (a) Let $\alpha \in \mathbf{C}$ be a fixed non-zero complex number. Construct a non-constant function $f \in \mathcal{H}(\mathbf{C})$ such that $f(z + \alpha) = f(z)$ for all $z \in \mathbf{C}$. Hint: consider first the case $\alpha = 2i\pi$.
 - (b) Show that if $f \in \mathcal{H}(\mathbf{C})$ satisfies the relations

$$f(z+1) = f(z)$$

$$f(z+i) = f(z)$$

for all $z \in \mathbf{C}$, then f is constant.

2. Let $U \subset \mathbf{C}$ be an open set and $z_0 \in U$. Let f be holomorphic on U outside z_0 with a pole of order $k \ge 1$ at z_0 . Define

$$g(z) = (z - z_0)^k f(z)$$

for $z \neq z_0$.

- (a) Show that z_0 is a removable singularity of the function g.
- (b) Show that

$$\operatorname{res}_{z_0}(f) = \lim_{\substack{z \to z_0 \\ z \neq z_0}} \frac{1}{(k-1)!} g^{(k-1)}(z).$$

3. Show that the following line integrals exist, and compute their values, where the curves are always oriented counterclockwise:

(a)
$$\int_{\gamma} \frac{\cos(z)}{z^2(z^2-8)} dz, \quad \gamma \text{ the boundary of the square } [-1,1] \times [-1,1]$$

(b)

$$\int_{\gamma} \frac{e^z}{e^{2z} - 1} dz, \quad \gamma \text{ the boundary of the triangle with vertices } -1 - i, 4i, 3.$$

Hint: the previous exercise can be used to compute residues.

Bitte wenden.

- 4. Show that the following functions are holomorphic in **C** except for isolated singularities. Show that these singularities are poles and determine their orders and residues.
 - (a) $f(z) = \frac{1}{\cos(z^2)}$

(b)
$$f(z) = \frac{z}{e^z - 1}$$
.

5. Consider the holomorphic function Γ defined in Exercise 1 of Exercise sheet 5. We showed that it is holomorphic on

$$U = \mathbf{C} - \{0, -1, -2, \ldots\}.$$

- (a) Show that the function $f: [0,1] \to \mathbf{R}$ defined by f(t) = -1 if t = 0 and $f(t) = (e^{-t} 1)/t$ if $0 < t \leq 1$ is continuous.
- (b) Show that the function

$$g(z) = \int_0^1 f(t) t^z dt$$

is defined and holomorphic for $\operatorname{Re}(z) > 0$.

(c) Show that for $\operatorname{Re}(z) > 1$, we have

$$\Gamma(z) = \frac{1}{z} + g(z) + \int_{1}^{+\infty} e^{-t} t^{z-1} dt.$$

- (d) Deduce that Γ has a pole at z = 0 with residue 1.
- (e) Let $k \ge 0$ be an integer. Show that Γ has a simple pole at -k with residue

$$\operatorname{res}_{-k}(\Gamma) = \frac{(-1)^k}{k!}.$$

Hint: argue by induction using the relation $\Gamma(z+1) = z\Gamma(z)$.