Exercise sheet 6

Exercise worth bonus points: Exercise 5

1. (a) Let $\alpha \in \mathbf{C}$ be a fixed non-zero complex number. Construct a non-constant function $f \in \mathcal{H}(\mathbf{C})$ such that $f(z+\alpha)=f(z)$ for all $z \in \mathbf{C}$.
Hint: consider first the case $\alpha=2 i \pi$.
(b) Show that if $f \in \mathcal{H}(\mathbf{C})$ satisfies the relations

$$
\begin{aligned}
f(z+1) & =f(z) \\
f(z+i) & =f(z)
\end{aligned}
$$

for all $z \in \mathbf{C}$, then f is constant.

Solution:

(a) For $\alpha=2 \pi i$ we can take $f(z)=e^{z}$. It is clear that

$$
f(z)=e^{z}=e^{z+2 \pi i}=f(z+2 \pi i)
$$

For $\alpha=0$ the result is trivial and for any $\alpha \in \mathbf{C} \backslash\{0\}$ we can take $f(z)=$ $e^{\frac{2 \pi i}{\alpha} z}$.
(b) We call $Q=[-1,1]^{2}$ the closed square centered in 0 of side lenght 1 . Since Q is compact it holds that

$$
\sup _{z \in Q}|f(z)|=: B<\infty .
$$

Now let $z \in \mathbf{C}$. There exists $n, k \in \mathbf{Z}$ such that $z+n+i k \in Q$. Using the relations that f satifies inductively we get that

$$
f(z)=f(z+n+i k) \Rightarrow|f(z)| \leqslant B
$$

We conclude that f is bounded and since it is holomorphic in the whole complex plane, by Liouville's theorem f has to be constant.
2. Let $U \subset \mathbf{C}$ be an open set and $z_{0} \in U$. Let f be holomorphic on U outside z_{0} with a pole of order $k \geqslant 1$ at z_{0}. Define

$$
g(z)=\left(z-z_{0}\right)^{k} f(z)
$$

for $z \neq z_{0}$.
(a) Show that z_{0} is a removable singularity of the function g.
(b) Show that

$$
\operatorname{res}_{z_{0}}(f)=\lim _{\substack{z \rightarrow z_{0} \\ z \neq z_{0}}} \frac{1}{(k-1)!} g^{(k-1)}(z)
$$

where $g\left(z_{0}\right)$ is the value at z_{0} of the unique holomorphic function on U that extends g.

Solution:

(a) If f is holomorphic on U and has a pole of order k in z_{0} we know that for $z \in B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\} \subset U$ we can write

$$
f(z)=\frac{a_{k}}{\left(z-z_{0}\right)^{k}}+\cdots+\frac{a_{1}}{z-z_{0}}+g(z)
$$

for g holomorphic in $B_{r}\left(z_{0}\right)$. Thus, for $z \in B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ it holds

$$
g(z)=a_{k}+a_{k-1}\left(z-z_{0}\right)+\cdots+a_{1}\left(z-z_{0}\right)^{k-1}+\left(z-z_{0}\right)^{k} g(z) .
$$

Since $a_{k}+a_{k-1}\left(z-z_{0}\right)+\cdots+a_{1}\left(z-z_{0}\right)^{k-1}+\left(z-z_{0}\right)^{k} g(z)$ is holomorphic in $B_{r}\left(z_{0}\right)$ and coincides with f for $z \in B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ we conclude that z_{0} is a removable singularity of g.
(b) We know that $\operatorname{res}_{z_{0}}(f)=a_{1}$. Observe that

$$
\begin{aligned}
g^{(k-1)}(z) & =a_{1} \cdot(k-1)!+\sum_{n=0}^{k-1}\binom{k-1}{n} k \cdot(k-1) \ldots(k-n+1)\left(z-z_{0}\right)^{k-n} g^{(k-1-n)}(z) \\
& =a_{1} \cdot(k-1)!+\left(z-z_{0}\right) h(z),
\end{aligned}
$$

where h is holormophic in U. Thus

$$
a_{1}=\lim _{\substack{z \rightarrow z_{0} \\ z \neq z_{0}}} \frac{1}{(k-1)!} g^{(k-1)}(z),
$$

as we wanted.
3. Show that the following line integrals exist, and compute their values, where the curves are always oriented counterclockwise:
(a)

$$
\int_{\gamma} \frac{\cos (z)}{z^{2}\left(z^{2}-8\right)} d z, \quad \gamma \text { the boundary of the square }[-1,1] \times[-1,1]
$$

(b) $\int_{\gamma} \frac{e^{z}}{e^{2 z}-1} d z, \quad \gamma$ the boundary of the triangle with vertices $-1-i, 4 i, 3$.

Hint: the previous exercise can be used to compute residues.

Solution:

(a) Observe that the integral is well-defined since the only singularities of the function we are integrating are $\sqrt{8},-\sqrt{8}$ and 0 , which are not γ. Since $z=0$ is the only singularity that lies inside the region bordered by γ it is enough to check its behaviour. Observe that

$$
f(z)=: \frac{\cos (z)}{z^{2}\left(z^{2}-8\right)}=\frac{1}{z^{2}}\left(\frac{\cos (z)}{z^{2}-8},\right)
$$

and $\cos (0) /\left(0^{2}-8\right)=-\frac{1}{8} \neq 0$, so we can take a small neighborhood of 0 where $\cos (z) /\left(z^{2}-8\right) \neq 0$ and conclude that $z=0$ is a pole of order 2 of f. We use the formula from the previous exercise to compute the residue:

$$
\lim _{\substack{z \rightarrow 0 \\ z \neq 0}}-\frac{\left(z^{2}-8\right) \sin (z)+2 z \cos (z)}{\left(z^{2}-8\right)^{2}}=0,
$$

thus

$$
\int_{\gamma} \frac{\cos (z)}{z^{2}\left(z^{2}-8\right)} d z=0
$$

(b) Let $f(z)=\frac{e^{z}}{e^{2 z}-1}$ and observe that f has singularities for $z=\pi i k, k \in \mathbf{Z}$, since $e^{z} \neq 0, \forall z \in \mathbf{C}$. The singularities that lie inside of the region given by γ are $z=0$ and $z=\pi i$. Observe that

$$
\begin{equation*}
\frac{e^{z}}{e^{2 z}-1}=\frac{1}{2 z}\left(\frac{e^{z}}{1+\frac{2 z}{2!}+\sum_{n=2}^{\infty} \frac{(2 z)^{n}}{(n+1)!}}\right) . \tag{1}
\end{equation*}
$$

Since e^{z} is never zero and we can take $\varepsilon>0$ small enough so that $\forall z \in B_{\varepsilon}(0)$

$$
\left|\frac{2 z}{2!}+\sum_{n=2}^{\infty} \frac{(2 z)^{n}}{n!}\right|<\frac{1}{2}
$$

we can conclude from equation 1 that $z=0$ is a pole of order 1 of f. A similar analysis shows that πi is also a pole of order 1 of f. We compute the residue at 0 using equation 1 and the analogous equation to compute the residue at πi :

$$
\begin{aligned}
\lim _{z \rightarrow 0} \frac{z e^{z}}{e^{2 z}-1} & =\frac{1}{2} \\
\lim _{z \rightarrow \pi i} \frac{(z-\pi i) e^{z}}{e^{2 z}-1} & =-\frac{1}{2},
\end{aligned}
$$

so by the Residue's Theorem we have

$$
\int_{\gamma} f(z) d z=2 \pi i\left(\operatorname{res}_{0}(f)+\operatorname{res}_{\pi i}(f)\right)=0 .
$$

4. Show that the following functions are holomorphic in \mathbf{C} except for isolated singularities. Show that these singularities are poles and determine their orders and residues.
(a) $f(z)=\frac{1}{\cos \left(z^{2}\right)}$
(b) $f(z)=\frac{z}{e^{z}-1}$.

Solution:

(a) We note that $\cos \left(z^{2}\right)=0 \Leftrightarrow z^{2}=\frac{\pi}{2}+\pi k$ for $k \in \mathbf{Z}$. Taking the square roots and defining

$$
z_{k}=\sqrt{\frac{\pi}{2}+\pi k}, \text { for } k \geqslant 0
$$

we observe that the singularies are given by $\left\{z_{k},-z_{k}, i z_{k},-i z_{k}\right\}_{k=0}^{\infty}$.
Let $w_{k} \in\left\{z_{k},-z_{k}, i z_{k},-i z_{k}\right\}$ and observe that

$$
\frac{1}{\cos \left(z^{2}\right)}=\frac{1}{-2 w_{k} \sin \left(w_{k}^{2}\right)\left(z-w_{k}\right)} \frac{1}{1+\sum_{n=2}^{\infty} a_{n}^{w_{k}}\left(z-w_{k}\right)^{n-1}}
$$

and if we take $\varepsilon>0$ small enough so that $\forall z \in B_{\varepsilon}\left(w_{k}\right)$ it holds that

$$
\left|\sum_{n=2}^{\infty} a_{n}^{w_{k}}\left(z-w_{k}\right)^{n-1}\right|<\frac{1}{2}
$$

we can conclude that w_{k} is a pole of order one of f. We compute the residue:

$$
\lim _{z \rightarrow w_{k}} \frac{z-w_{k}}{\cos \left(z^{2}\right)}=-\frac{1}{2 w_{k} \sin \left(w_{k}^{2}\right)} .
$$

Observe that $\sin \left(z_{k}^{2}\right)=\sin \left(\left(-z_{k}\right)^{2}\right)=1$ and $\sin \left(\left(i z_{k}\right)^{2}\right)=\sin \left(\left(-i z_{k}\right)^{2}\right)=-1$.
(b) As we've seen in Exercise Sheet 4, the singularity at $z=0$ is removable. The other singularies of f are given by $z_{k}=2 \pi i k$ for $k \in \mathbf{Z} \backslash\{0\}$. Expanding in Taylor series we get

$$
\begin{equation*}
f(z)=\frac{1}{z-2 \pi i k} \cdot \frac{z}{1+\sum_{n=2}^{\infty} \frac{(z-2 \pi i k)^{n-1}}{n!}}, \tag{2}
\end{equation*}
$$

for $\varepsilon>0$ small enough we know that $\forall z \in B_{\varepsilon}(2 \pi i k)$

$$
\left|\sum_{n=2}^{\infty} \frac{(z-2 \pi i k)^{n-1}}{n!}\right|<\frac{1}{2},
$$

so we conclude that the singularities are poles of order 1 and using equation 2 we get that

$$
\lim _{z \rightarrow 2 \pi i k} \frac{z(z-2 \pi i k)}{e^{z}-1}=2 \pi i k
$$

thus $\operatorname{res}_{z_{k}}(f)=z_{k}$.
5. Consider the holomorphic function Γ defined in Exercise 1 of Exercise sheet 5. We showed that it is holomorphic on

$$
U=\mathbf{C}-\{0,-1,-2, \ldots\} .
$$

(a) Show that the function $f:[0,1] \rightarrow \mathbf{R}$ defined by $f(t)=-1$ if $t=0$ and $f(t)=\left(e^{-t}-1\right) / t$ if $0<t \leqslant 1$ is continuous.
(b) Show that the function

$$
g(z)=\int_{0}^{1} f(t) t^{z} d t
$$

is defined and holomorphic for $\operatorname{Re}(z)>0$.
(c) Show that for $\operatorname{Re}(z)>1$, we have

$$
\Gamma(z)=\frac{1}{z}+g(z)+\int_{1}^{+\infty} e^{-t} t^{z-1} d t
$$

(d) Deduce that Γ has a pole at $z=0$ with residue 1 .
(e) Let $k \geqslant 0$ be an integer. Show that Γ has a simple pole at $-k$ with residue

$$
\operatorname{res}_{-k}(\Gamma)=\frac{(-1)^{k}}{k!}
$$

Hint: argue by induction using the relation $\Gamma(z+1)=z \Gamma(z)$.

Solution:

(a) The function is clearly continuous for $0<t \leqslant 1$, so we just have to show that it is also continuous at zero.

$$
\lim _{t \rightarrow 0^{+}} \frac{e^{-t}-1}{t}=\lim _{t \rightarrow 0^{+}} \frac{-t+O\left(t^{2}\right)}{t}=-1
$$

(b) Let $\Omega=\{z: \operatorname{Re}(z)>1\}$. Observe that $F:[0,1] \times \Omega, F(t, z)=\frac{e^{-1}-1}{t} \cdot t^{z}$ is a continuous function and for every fixed $t_{0} \in[0,1], F\left(t_{0}, z\right)$ defines an holomoprhic function in Ω. Thus, by Theorem 5.4 we can conclude that g is holormophic in Ω.
(c) Recall that for $\operatorname{Re}(z)>1$:

$$
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t
$$

and that the integral is absolutely convergent in this domain. We can split it as follows:

$$
\Gamma(z)=\int_{0}^{1} e^{-t} t^{z-1} d t+\int_{1}^{\infty} e^{-t} t^{z-1} d t
$$

To conclude, observe that if $-1<\sigma<\infty$ then

$$
\int_{0}^{1} t^{\sigma} d t<\infty
$$

and we also know that

$$
\left|\int_{0}^{1} e^{-t} t^{z-1} d t\right|<\infty
$$

for $\operatorname{Re}(z)>0$ so g can be written as

$$
\int_{0}^{1} \frac{e^{-t}-1}{t} t^{z} d t=\int_{0}^{1} e^{-t} t^{z-1} d t-\int_{0}^{1} t^{z-1} d t=\int_{0}^{1} e^{-t} t^{z-1} d t-\frac{1}{z}
$$

given the identity that we desired.
(d) Recall that $z \Gamma(z)=\Gamma(z+1)$, so for $\operatorname{Re}(z)>-1$ we can write

$$
\Gamma(z)=\frac{\Gamma(z+2)}{z(z+1)}
$$

and from the formula of the previous item we can compute $\Gamma(2)=1$ so we conclude that $z=0$ is a pole of order 1 since $\Gamma(z+2) /(z+1)$ is never zero in a small neighborhood of 0 . Using the same identity we compute $\lim _{z \rightarrow 0} z \Gamma(z)$:

$$
\lim _{z \rightarrow 0} z \Gamma(z)=\lim _{z \rightarrow 0} \frac{\Gamma(z+2)}{(z+1)}=\Gamma(2)=1,
$$

as we wanted.
Computation of $\Gamma(2)$:

$$
\begin{aligned}
\Gamma(2) & =\frac{1}{2}+\int_{0}^{1} \frac{e^{-t}-1}{t} d t+\int_{1}^{\infty} e^{-t} t d t \\
& =\frac{1}{2}-\int_{0}^{1} t d t+\int_{0}^{\infty} e^{-t} t d t \\
& \frac{1}{2}-\frac{1}{2}+1=1 .
\end{aligned}
$$

(e) Using the identity $\Gamma(z+1)=z \Gamma(z)$ inductively we get, for $k \geqslant 0$.

$$
\Gamma(z)=\frac{\Gamma(z+k+2)}{(z+k+1)(z+k) \ldots(z+1) z},
$$

and the identity holds for $\{z:-k-1<\operatorname{Re}(z)\} \backslash\{-k\}$.
Using the same strategy as in the previous item we conclude that $z=-k$ is a pole of order 1 of Γ.
We compute the residue:

$$
\begin{aligned}
\lim _{z \rightarrow-k} \Gamma(z)(z+k) & =\lim _{z \rightarrow-k} \frac{\Gamma(z+k+2)}{(z+k+1) \ldots(z+1) z} \\
& =\frac{\Gamma(2)}{1 \cdot(-1) \ldots(-k+1)(-k)}=\frac{(-1)^{k}}{k!} .
\end{aligned}
$$

