D-MATH Complex Analysis HS 2022
Prof. Emmanuel Kowalski

Exercise sheet 6

Exercise worth bonus points: Exercise 5

1. (a) Let a € C be a fixed non-zero complex number. Construct a non-constant
function f € H(C) such that f(z+ «) = f(z) for all z € C.
Hint: consider first the case o = 2.

(b) Show that if f € H(C) satisfies the relations
flz+1) = f(2)
flz+1) = f(z)
for all z € C, then f is constant.

Solution:

(a) For oo = 2mi we can take f(z) = e®. It is clear that
f(2) =e* = et = f(z + 2mi).

For av = 0 the result is trivial and for any o € C \ {0} we can take f(z) =

27 P

€ o

(b) We call Q = [—1, 1]? the closed square centered in 0 of side lenght 1. Since Q
is compact it holds that

sup|f(2)| =: B < oc.
z€Q

Now let z € C. There exists n, k € Z such that z + n 4+ ik € (). Using the
relations that f satifies inductively we get that

f(z) = f(z+n+ik) = [f(z)] < B.

We conclude that f is bounded and since it is holomorphic in the whole
complex plane, by Liouville’s theorem f has to be constant.

2. Let U C C be an open set and zy € U. Let f be holomorphic on U outside zg with
a pole of order k > 1 at zy. Define

9(2) = (2 — 20)"f (2)

for z # z.
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(b)

Show that zy is a removable singularity of the function g.

Show that

res,, (f) = lim g*Y(2)
k-

Y

where g(zp) is the value at zy of the unique holomorphic function on U that
extends g.

Solution:

(a)

If f is holomorphic on U and has a pole of order k in z; we know that for
z € By(29) ~ {20} C U we can write

Qe aq
f(z):m+'“+

p— 9(2),

for g holomorphic in B, (2y). Thus, for z € B,(2) ~ {20} it holds

9(2) = ap + ap_1(z — 2) + -+ ar(z — 20) 7+ (2 — 2)*g(2).

Since ay, + ap_1(z — 20) + -+ + a1(z — 20)* 7 + (2 — 20)¥g(2) is holomorphic
in B,(z) and coincides with f for z € B,(20) \ {20} we conclude that zj is
a removable singularity of g.

We know that res.,(f) = a;. Observe that

where h is holormophic in U. Thus

a; = lim g%V (z2)
g (k=1

Y

as we wanted.

3. Show that the following line integrals exist, and compute their values, where the
curves are always oriented counterclockwise:

()

/Yz?((jzz—%)éé)dz’ ~ the boundary of the square [—1,1] x [—1,1]



(b)

/ 5 ¢ ldz, ~ the boundary of the triangle with vertices — 1 — 1,44, 3.
€% —
v

Hint: the previous exercise can be used to compute residues.

Solution:

(a)

Observe that the integral is well-defined since the only singularities of the
function we are integrating are v/8, —v/8 and 0, which are not 7. Since z = 0
is the only singularity that lies inside the region bordered by ~ it is enough
to check its behaviour. Observe that

cos(z) 1 (cos(z) >

: 22(22—8) 22 \22-8’

f(z) =

and cos(0)/(0? = 8) = —3 # 0, so we can take a small neighborhood of 0
where cos(z)/(2? — 8) # 0 and conclude that z = 0 is a pole of order 2 of f.
We use the formula from the previous exercise to compute the residue:

lim (2% — 8) sin(z) + 2z cos(z)

et (22 —8)?

=0,

thus

Let f(2) = 626—2_1 and observe that f has singularities for z = ik, k € Z,
since e* # 0, Vz € C. The singularities that lie inside of the region given by
~v are z = 0 and z = mi. Observe that

e z

22 _ 1 9, z 00 2z)" :
€ 1 22 \1 + % + Zn:Q ((n+)1)!
Since € is never zero and we can take £ > 0 small enough so that Vz € B.(0)

27 = (22)"
2! * Z n!

n=2

(1)

<

DN | —

we can conclude from equation 1 that z = 0 is a pole of order 1 of f. A similar
analysis shows that 7 is also a pole of order 1 of f. We compute the residue
at 0 using equation 1 and the analogous equation to compute the residue at
e
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£1—>0 ez — 1 - 2
lim (z — mi)e? _ 17
2w e22 — 1] 2

so by the Residue’s Theorem we have
/f(z)dz = 2mi(reso(f) + resyi(f)) = 0.
v

4. Show that the following functions are holomorphic in C except for isolated sin-
gularities. Show that these singularities are poles and determine their orders and
residues.

() f(2) = oy
(b) f(2) = 5.

Solution:

(a) We note that cos(z?) = 0 < 2> = 5 + 7k for k € Z. Taking the square roots

and defining
/T
2L = §—|—7rk, for k > 0,

we observe that the singularies are given by {zx, —2k, 12k, =12k} 22-
Let wy, € {zk, —2k, iz, —i2} and observe that

1 1 1

cos(22)  —2wgsin(w?)(z —wy) 14+ Y o0, an*(z — wy)"

and if we take € > 0 small enough so that Vz € B.(wy) it holds that

<

DO | —

oo
Z al (z — wy)" !
n=2

we can conclude that wy, is a pole of order one of f. We compute the residue:

Z — Wy 1

et cos(22) 2wy sin(w?)’
Observe that sin(z7) = sin((—2;)?) = 1 and sin((iz;)?) = sin((—iz)?) = —1.
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(b) As we've seen in Exercise Sheet 4, the singularity at z = 0 is removable. The
other singularies of f are given by z, = 2mik for k € Z ~ {0}. Expanding in
Taylor series we get

1 z

= . , 2
f(Z) > — omik 14 ZZOZQ (z—2mik)n—1 ( )

n!
for € > 0 small enough we know that Vz € B.(2mik)

(e 9]

Z z—2mk

1
27
=2

so we conclude that the singularities are poles of order 1 and using equation
2 we get that

— o
lim 2(z — 2mik)
z—2mik e —1

= 2mik
thus res,, (f) = 2.

5. Consider the holomorphic function I' defined in Exercise 1 of Exercise sheet 5. We
showed that it is holomorphic on

U=C—1{0,-1,-2,...}.

(a) Show that the function f: [0,1] — R defined by f(t) = —1if ¢ = 0 and
ft)= (et —=1)/tif 0 <t <1 is continuous.

(b) Show that the function
1
_ / Ft)Edt
0

is defined and holomorphic for Re(z) > 0.
(c) Show that for Re(z) > 1, we have

1 too
'(z) = - +g(2) + / e 't dt.
1

(d) Deduce that I" has a pole at z = 0 with residue 1.
(e) Let k> 0 be an integer. Show that I' has a simple pole at —k with residue

res_(I') = <_k;1') :

Hint: argue by induction using the relation I'(z 4+ 1) = 2I'(z).
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Solution:

(a) The function is clearly continuous for 0 < ¢ < 1, so we just have to show that
it is also continuous at zero.

—t 1 —t+ O(#?
lim ¢ = lim +—<>
t—0+ t t—0+ t

=1

(b) Let Q@ = {z : Re(2) > 1}. Observe that F' : [0,1] x Q, F(t,z) = <=L . ¢*
is a continuous function and for every fixed tq € [0, 1], F(to,z) defines an
holomoprhic function in €2. Thus, by Theorem 5.4 we can conclude that g is
holormophic in §2.

(¢) Recall that for Re(z) > 1:

F(z):/ ettt
0

and that the integral is absolutely convergent in this domain. We can split it

as follows:
1 e’}
['(2) :/ ettZ1dt+/ e e
0 1

To conclude, observe that if —1 < o < oo then

1
/ t°dt < oo
0
1
/ et dt
0

for Re(z) > 0 so g can be written as

| 1 1 1 1
/ tzdt:/ e_ttz_ldt—/ tz_ldt:/ et ldt — =,
0 13 0 0 0 <

given the identity that we desired.
(d) Recall that 2I'(z) = I'(z + 1), so for Re(z) > —1 we can write

and we also know that

< 00




and from the formula of the previous item we can compute I'(2) = 1 so we
conclude that z = 0 is a pole of order 1 since I'(z +2)/(z + 1) is never zero in
a small neighborhood of 0. Using the same identity we compute lim,_,q 2I'(2):

I'(z+2

lim 2I'(2) = lim ) =1'(2) =1,

z—0 z—0 (,Z —+ 1)

as we wanted.
Computation of I'(2) :

1 1 7t_1 0
F(2):—+/ ‘ dt+/ e 'tdt
2 0 t 1
1 1 [e's) »
= - — tdt + e "tdt

2 0 0
1 1
———+1=1
2 2+

Using the identity I'(z + 1) = 2I'(z) inductively we get, for k& > 0.

I'(z+k+2)
(z+k+1)(z+k)...(z+1)2’

I'(z) =

and the identity holds for {z : —k — 1 < Re(z)} ~ {—k}.
Using the same strategy as in the previous item we conclude that z = —k is
a pole of order 1 of I

We compute the residue:

: o [(z4+k+2)
Zl_lgkl“(z)(z k)= Zl_1>r£1k (z+k+1)...(z+ 1)z
['(2) _(=DF

T L (-0 (k+D(=k) K



