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D-MATH Complex Analysis HS 2022
Prof. Emmanuel Kowalski

Exercise sheet 6

Exercise worth bonus points: Exercise 5

1. (a) Let α ∈ C be a fixed non-zero complex number. Construct a non-constant
function f ∈ H(C) such that f(z + α) = f(z) for all z ∈ C.

Hint: consider first the case α = 2iπ.

(b) Show that if f ∈ H(C) satisfies the relations

f(z + 1) = f(z)

f(z + i) = f(z)

for all z ∈ C, then f is constant.

Solution:

(a) For α = 2πi we can take f(z) = ez. It is clear that

f(z) = ez = ez+2πi = f(z + 2πi).

For α = 0 the result is trivial and for any α ∈ C r {0} we can take f(z) =

e
2πi
α
z.

(b) We call Q = [−1, 1]2 the closed square centered in 0 of side lenght 1. Since Q
is compact it holds that

sup
z∈Q
|f(z)| =: B <∞.

Now let z ∈ C. There exists n, k ∈ Z such that z + n + ik ∈ Q. Using the
relations that f satifies inductively we get that

f(z) = f(z + n+ ik)⇒ |f(z)| 6 B.

We conclude that f is bounded and since it is holomorphic in the whole
complex plane, by Liouville’s theorem f has to be constant.

2. Let U ⊂ C be an open set and z0 ∈ U . Let f be holomorphic on U outside z0 with
a pole of order k > 1 at z0. Define

g(z) = (z − z0)kf(z)

for z 6= z0.
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(a) Show that z0 is a removable singularity of the function g.

(b) Show that

resz0(f) = lim
z→z0
z 6=z0

1

(k − 1)!
g(k−1)(z),

where g(z0) is the value at z0 of the unique holomorphic function on U that
extends g.

Solution:

(a) If f is holomorphic on U and has a pole of order k in z0 we know that for
z ∈ Br(z0) r {z0} ⊂ U we can write

f(z) =
ak

(z − z0)k
+ · · ·+ a1

z − z0
+ g(z),

for g holomorphic in Br(z0). Thus, for z ∈ Br(z0) r {z0} it holds

g(z) = ak + ak−1(z − z0) + · · ·+ a1(z − z0)k−1 + (z − z0)kg(z).

Since ak + ak−1(z − z0) + · · · + a1(z − z0)k−1 + (z − z0)kg(z) is holomorphic
in Br(z0) and coincides with f for z ∈ Br(z0) r {z0} we conclude that z0 is
a removable singularity of g.

(b) We know that resz0(f) = a1. Observe that

g(k−1)(z) = a1 · (k − 1)! +
k−1∑
n=0

(
k − 1

n

)
k · (k − 1) . . . (k − n+ 1)(z − z0)k−ng(k−1−n)(z)

= a1 · (k − 1)! + (z − z0)h(z),

where h is holormophic in U . Thus

a1 = lim
z→z0
z 6=z0

1

(k − 1)!
g(k−1)(z),

as we wanted.

3. Show that the following line integrals exist, and compute their values, where the
curves are always oriented counterclockwise:

(a) ∫
γ

cos(z)

z2(z2 − 8)
dz, γ the boundary of the square [−1, 1]× [−1, 1]
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(b) ∫
γ

ez

e2z − 1
dz, γ the boundary of the triangle with vertices − 1− i, 4i, 3.

Hint: the previous exercise can be used to compute residues.

Solution:

(a) Observe that the integral is well-defined since the only singularities of the
function we are integrating are

√
8,−
√

8 and 0, which are not γ. Since z = 0
is the only singularity that lies inside the region bordered by γ it is enough
to check its behaviour. Observe that

f(z) =:
cos(z)

z2(z2 − 8)
=

1

z2

(
cos(z)

z2 − 8
,

)
and cos(0)/(02 − 8) = −1

8
6= 0, so we can take a small neighborhood of 0

where cos(z)/(z2 − 8) 6= 0 and conclude that z = 0 is a pole of order 2 of f .
We use the formula from the previous exercise to compute the residue:

lim
z→0
z 6=0

−(z2 − 8) sin(z) + 2z cos(z)

(z2 − 8)2
= 0,

thus ∫
γ

cos(z)

z2(z2 − 8)
dz = 0.

(b) Let f(z) = ez

e2z−1 and observe that f has singularities for z = πik, k ∈ Z,
since ez 6= 0, ∀z ∈ C. The singularities that lie inside of the region given by
γ are z = 0 and z = πi. Observe that

ez

e2z − 1
=

1

2z

(
ez

1 + 2z
2!

+
∑∞

n=2
(2z)n

(n+1)!

)
. (1)

Since ez is never zero and we can take ε > 0 small enough so that ∀z ∈ Bε(0)∣∣∣∣∣2z2!
+
∞∑
n=2

(2z)n

n!

∣∣∣∣∣ < 1

2

we can conclude from equation 1 that z = 0 is a pole of order 1 of f . A similar
analysis shows that πi is also a pole of order 1 of f . We compute the residue
at 0 using equation 1 and the analogous equation to compute the residue at
πi:

3



lim
z→0

zez

e2z − 1
=

1

2

lim
z→πi

(z − πi)ez

e2z − 1
= −1

2
,

so by the Residue’s Theorem we have∫
γ

f(z)dz = 2πi(res0(f) + resπi(f)) = 0.

4. Show that the following functions are holomorphic in C except for isolated sin-
gularities. Show that these singularities are poles and determine their orders and
residues.

(a) f(z) = 1
cos(z2)

(b) f(z) = z
ez−1 .

Solution:

(a) We note that cos(z2) = 0⇔ z2 = π
2

+ πk for k ∈ Z. Taking the square roots
and defining

zk =

√
π

2
+ πk, for k > 0,

we observe that the singularies are given by {zk,−zk, izk,−izk}∞k=0.

Let wk ∈ {zk,−zk, izk,−izk} and observe that

1

cos(z2)
=

1

−2wk sin(w2
k)(z − wk)

1

1 +
∑∞

n=2 a
wk
n (z − wk)n−1

,

and if we take ε > 0 small enough so that ∀z ∈ Bε(wk) it holds that

∣∣∣∣∣
∞∑
n=2

awkn (z − wk)n−1
∣∣∣∣∣ < 1

2

we can conclude that wk is a pole of order one of f . We compute the residue:

lim
z→wk

z − wk
cos(z2)

= − 1

2wk sin(w2
k)
.

Observe that sin(z2k) = sin((−zk)2) = 1 and sin((izk)
2) = sin((−izk)2) = −1.
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(b) As we’ve seen in Exercise Sheet 4, the singularity at z = 0 is removable. The
other singularies of f are given by zk = 2πik for k ∈ Zr {0}. Expanding in
Taylor series we get

f(z) =
1

z − 2πik
· z

1 +
∑∞

n=2
(z−2πik)n−1

n!

, (2)

for ε > 0 small enough we know that ∀z ∈ Bε(2πik)∣∣∣∣∣
∞∑
n=2

(z − 2πik)n−1

n!

∣∣∣∣∣ < 1

2
,

so we conclude that the singularities are poles of order 1 and using equation
2 we get that

lim
z→2πik

z(z − 2πik)

ez − 1
= 2πik

thus reszk(f) = zk.

5. Consider the holomorphic function Γ defined in Exercise 1 of Exercise sheet 5. We
showed that it is holomorphic on

U = C− {0,−1,−2, . . .}.

(a) Show that the function f : [0, 1] → R defined by f(t) = −1 if t = 0 and
f(t) = (e−t − 1)/t if 0 < t 6 1 is continuous.

(b) Show that the function

g(z) =

∫ 1

0

f(t)tzdt

is defined and holomorphic for Re(z) > 0.

(c) Show that for Re(z) > 1, we have

Γ(z) =
1

z
+ g(z) +

∫ +∞

1

e−ttz−1dt.

(d) Deduce that Γ has a pole at z = 0 with residue 1.

(e) Let k > 0 be an integer. Show that Γ has a simple pole at −k with residue

res−k(Γ) =
(−1)k

k!
.

Hint: argue by induction using the relation Γ(z + 1) = zΓ(z).
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Solution:

(a) The function is clearly continuous for 0 < t 6 1, so we just have to show that
it is also continuous at zero.

lim
t→0+

e−t − 1

t
= lim

t→0+

−t+O(t2)

t
= −1

(b) Let Ω = {z : Re(z) > 1}. Observe that F : [0, 1] × Ω, F (t, z) = e−1−1
t
· tz

is a continuous function and for every fixed t0 ∈ [0, 1], F (t0, z) defines an
holomoprhic function in Ω. Thus, by Theorem 5.4 we can conclude that g is
holormophic in Ω.

(c) Recall that for Re(z) > 1:

Γ(z) =

∫ ∞
0

e−ttz−1dt

and that the integral is absolutely convergent in this domain. We can split it
as follows:

Γ(z) =

∫ 1

0

e−ttz−1dt+

∫ ∞
1

e−ttz−1dt.

To conclude, observe that if −1 < σ <∞ then∫ 1

0

tσdt <∞

and we also know that ∣∣∣∣∫ 1

0

e−ttz−1dt

∣∣∣∣ <∞
for Re(z) > 0 so g can be written as∫ 1

0

e−t − 1

t
tzdt =

∫ 1

0

e−ttz−1dt−
∫ 1

0

tz−1dt =

∫ 1

0

e−ttz−1dt− 1

z
,

given the identity that we desired.

(d) Recall that zΓ(z) = Γ(z + 1), so for Re(z) > −1 we can write

Γ(z) =
Γ(z + 2)

z(z + 1)
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and from the formula of the previous item we can compute Γ(2) = 1 so we
conclude that z = 0 is a pole of order 1 since Γ(z+ 2)/(z+ 1) is never zero in
a small neighborhood of 0. Using the same identity we compute limz→0 zΓ(z):

lim
z→0

zΓ(z) = lim
z→0

Γ(z + 2)

(z + 1)
= Γ(2) = 1,

as we wanted.

Computation of Γ(2) :

Γ(2) =
1

2
+

∫ 1

0

e−t − 1

t
dt+

∫ ∞
1

e−ttdt

=
1

2
−
∫ 1

0

tdt+

∫ ∞
0

e−ttdt

1

2
− 1

2
+ 1 = 1.

(e) Using the identity Γ(z + 1) = zΓ(z) inductively we get, for k > 0.

Γ(z) =
Γ(z + k + 2)

(z + k + 1)(z + k) . . . (z + 1)z
,

and the identity holds for {z : −k − 1 < Re(z)}r {−k}.
Using the same strategy as in the previous item we conclude that z = −k is
a pole of order 1 of Γ.

We compute the residue:

lim
z→−k

Γ(z)(z + k) = lim
z→−k

Γ(z + k + 2)

(z + k + 1) . . . (z + 1)z

=
Γ(2)

1 · (−1) . . . (−k + 1)(−k)
=

(−1)k

k!
.
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