Exercise sheet 7

Exercise worth bonus points: Exercise 3

1. Show that for a > 0, we have

$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{x^2 + a^2} dx = \frac{\pi e^{-a}}{a}.$$

Hint: Observe that

$$\int_{-R}^{R} \frac{\sin(x)}{x^2 + a^2} dx = 0$$

for all R > 0.

2. Let $k \ge 1$ be an integer and x > 0 a real number. Compute

$$\operatorname{res}_{z=0}\left(\frac{x^z}{z^k}\right)$$

as a function of x, where $x^z = \exp(z \log(x))$ for all $z \in \mathbf{C}$.

- 3. Let f be a meromorphic function on C. Define g(z) = f(1/z) for $z \neq 0$ in C.
 - (a) Show that $g \in \mathcal{M}(\mathbf{C}^*)$.

We assume from now on that g has a pole at $z_0 = 0$.

- (b) Show that f has only finitely many poles in \mathbf{C} .
- (c) Show that there exist polynomials p_1 and q_1 , with $q_1 \neq 0$, and a real number R > 0, such that the meromorphic function $f p_1/q_1$ is holomorphic and bounded for |z| > R.

Hint: consider the principal part of g.

- (d) Show that there exist polynomials p_2 and q_2 , with $q_2 \neq 0$ such that the meromorphic function $f p_1/q_1 p_2/q_2$ is holomorphic and bounded on **C**.
- (e) Conclude that there exist polynomials p_3 and q_3 , with $q_3 \neq 0$ such that $f = p_3/q_3$.
- 4. Let $f \in \mathcal{H}(\mathbf{C})$ be a non-constant holomorphic function. Show that for any $w \in \mathbf{C}$ and any $\delta > 0$, there exists $z \in \mathbf{C}$ such that $|f(z) w| < \delta$.

Hint: if this were not true, consider the function g(z) = 1/(f(z) - w).

Bitte wenden.

- 5. Let $f \in \mathcal{H}(D_1(0))$. We assume that f(0) = 0 and that $|f(z)| \leq 1$ for all $z \in D_1(0)$.
 - (a) Show that the function $g: D_1^*(0) \to \mathbb{C}$ defined by g(z) = f(z)/z is holomorphic on $D_1^*(0)$ with a removable singularity at 0. We denote still by g the holomorphic extension of g to $D_1(0)$.
 - (b) Let $r \in]0, 1[$. Show that $|g(z)| \leq 1/r$ if |z| < r.
 - (c) Deduce that $|f(z)| \leq |z|$ for all $z \in D_1(0)$.