Exercise sheet 7

Exercise worth bonus points: Exercise 3

1. Show that for $a>0$, we have

$$
\int_{-\infty}^{+\infty} \frac{\cos (x)}{x^{2}+a^{2}} d x=\frac{\pi e^{-a}}{a} .
$$

Hint: Observe that

$$
\int_{-R}^{R} \frac{\sin (x)}{x^{2}+a^{2}} d x=0
$$

for all $R>0$.
2. Let $k \geqslant 1$ be an integer and $x>0$ a real number. Compute

$$
\operatorname{res}_{z=0}\left(\frac{x^{z}}{z^{k}}\right)
$$

as a function of x, where $x^{z}=\exp (z \log (x))$ for all $z \in \mathbf{C}$.
3. Let f be a meromorphic function on \mathbf{C}. Define $g(z)=f(1 / z)$ for $z \neq 0$ in \mathbf{C}.
(a) Show that $g \in \mathcal{M}\left(\mathbf{C}^{*}\right)$.

We assume from now on that g has a pole at $z_{0}=0$.
(b) Show that f has only finitely many poles in \mathbf{C}.
(c) Show that there exist polynomials p_{1} and q_{1}, with $q_{1} \neq 0$, and a real number $R>0$, such that the meromorphic function $f-p_{1} / q_{1}$ is holomorphic and bounded for $|z|>R$.
Hint: consider the principal part of g.
(d) Show that there exist polynomials p_{2} and q_{2}, with $q_{2} \neq 0$ such that the meromorphic function $f-p_{1} / q_{1}-p_{2} / q_{2}$ is holomorphic and bounded on \mathbf{C}.
(e) Conclude that there exist polynomials p_{3} and q_{3}, with $q_{3} \neq 0$ such that $f=p_{3} / q_{3}$.
4. Let $f \in \mathcal{H}(\mathbf{C})$ be a non-constant holomorphic function. Show that for any $w \in \mathbf{C}$ and any $\delta>0$, there exists $z \in \mathbf{C}$ such that $|f(z)-w|<\delta$.
Hint: if this were not true, consider the function $g(z)=1 /(f(z)-w)$.
5. Let $f \in \mathcal{H}\left(D_{1}(0)\right)$. We assume that $f(0)=0$ and that $|f(z)| \leqslant 1$ for all $z \in D_{1}(0)$.
(a) Show that the function $g: D_{1}^{*}(0) \rightarrow \mathbf{C}$ defined by $g(z)=f(z) / z$ is holomorphic on $D_{1}^{*}(0)$ with a removable singularity at 0 . We denote still by g the holomorphic extension of g to $D_{1}(0)$.
(b) Let $r \in] 0,1[$. Show that $|g(z)| \leqslant 1 / r$ if $|z|<r$.
(c) Deduce that $|f(z)| \leqslant|z|$ for all $z \in D_{1}(0)$.

