Exercise sheet 7

Exercise worth bonus points: Exercise 3

1. Show that for $a>0$, we have

$$
\int_{-\infty}^{+\infty} \frac{\cos (x)}{x^{2}+a^{2}} d x=\frac{\pi e^{-a}}{a}
$$

Hint: Observe that

$$
\int_{-R}^{R} \frac{\sin (x)}{x^{2}+a^{2}} d x=0
$$

for all $R>0$.

Solution:

Denote $g(z)=\frac{e^{i z}}{z^{2}+a^{2}}$. For $R>a+1$ we integrate g in the closed path γ, given by the boundary of the upper half of the disk of radius R with center zero, in the counter-clockwise direction. The Residue Theorem gives us

$$
\int_{\gamma} \frac{e^{i z}}{z^{2}+a^{2}} d z=2 \pi i \operatorname{Res}(g, i a) .
$$

On the otherside, using line integrals we get

$$
\int_{\gamma} \frac{e^{i z}}{z^{2}+a^{2}} d z=\int_{-R}^{R} \frac{e^{i x}}{x^{2}+a^{2}} d x+\int_{0}^{\pi} \frac{e^{i R(\cos (t)+i \sin (t))} R e^{i t}}{R^{2} e^{2 i t}+a^{2}} d t .
$$

Observe that

$$
\left|\int_{0}^{\pi} \frac{e^{i R(\cos (t)+i \sin (t))} R e^{i t}}{R^{2} e^{2 i t}+a^{2}} d t\right| \leqslant \int_{0}^{\pi} \frac{R e^{-R \sin (t)}}{R^{2}-a^{2}} d t \leqslant \frac{\pi R}{R^{2}-a^{2}},
$$

where we used $\sin (t)>0$ for $t \in[0, \pi]$ and $\left|R^{2} e^{2 i t}+a^{2}\right| \geqslant R^{2}-a^{2}$. Letting $R \rightarrow \infty$ and using that $\int_{-R}^{R} \frac{\sin (x)}{x^{2}+a^{2}} d x=0$, we conclude that

$$
\int_{-\infty}^{\infty} \frac{\cos (x)}{x^{2}+a^{2}} d x=\operatorname{Re}(2 \pi i \operatorname{Res}(g, i a))
$$

To compute the residue we write

$$
\frac{1}{z^{2}+a^{2}}=\frac{1}{2 a i} \cdot \frac{1}{x-a i}-\frac{1}{2 a i} \cdot \frac{1}{x+a i},
$$

SO

$$
\int_{-\infty}^{\infty} \frac{\cos (x)}{x^{2}+a^{2}} d x=\frac{\pi e^{-a}}{a}
$$

2. Let $k \geqslant 1$ be an integer and $x>0$ a real number. Compute

$$
\operatorname{res}_{z=0}\left(\frac{x^{z}}{z^{k}}\right)
$$

as a function of x, where $x^{z}=\exp (z \log (x))$ for all $z \in \mathbf{C}$.

Solution:

Observe that $z=0$ is a pole of order k. We use the formula computed in the previous exercise sheet to compute the residue:

$$
\operatorname{res}_{z=0}\left(\frac{x^{z}}{z^{k}}\right)=\frac{1}{(k-1)!} \lim _{\substack{z \neq 0 \\ z \neq 0}}\left(e^{z \log x}\right)^{(k-1)}=\frac{(\log x)^{k-1}}{(k-1)!}
$$

3. Let f be a meromorphic function on \mathbf{C}. Define $g(z)=f(1 / z)$ for $z \neq 0$ in \mathbf{C}.
(a) Show that $g \in \mathcal{M}\left(\mathbf{C}^{*}\right)$.

We assume from now on that g has a pole at $z_{0}=0$.
(b) Show that f has only finitely many poles in \mathbf{C}.
(c) Show that there exist polynomials p_{1} and q_{1}, with $q_{1} \neq 0$, and a real number $R>0$, such that the meromorphic function $f-p_{1} / q_{1}$ is holomorphic and bounded for $|z|>R$.
Hint: consider the principal part of g.
(d) Show that there exist polynomials p_{2} and q_{2}, with $q_{2} \neq 0$ such that the meromorphic function $f-p_{1} / q_{1}-p_{2} / q_{2}$ is holomorphic and bounded on \mathbf{C}.
(e) Conclude that there exist polynomials p_{3} and q_{3}, with $q_{3} \neq 0$ such that $f=p_{3} / q_{3}$.

Solutions:

(a) Let $V=\{z \in \mathbf{C} \backslash\{0\}: g(z)=\infty\}$ and $U=\{z \in \mathbf{C} \backslash\{0\}: f(z)=\infty\}$ and consider K a compact set in $\mathbf{C} \backslash\{0\}$. Observe that there exists $\varepsilon>0$ and $K>0$ such that $\forall z \in K, \varepsilon \leqslant|z| \leqslant K$. Thus

$$
V \cap K \subset\left\{z: \frac{1}{K} \leqslant|z| \leqslant \frac{1}{\varepsilon}\right\} \cap U,
$$

which has to be finite because f is meremorphic.
Since $1 / z$ is holomorphic in $\mathbf{C} \backslash\{0\}$ and f is holomorphic in U it follows that $f(1 / z)$ has to be holormorphic in V. And, if z_{0} is such that $g\left(z_{0}\right)=\infty$ then
f has a pole in $1 / z_{0}$, thus z_{0} has to be a pole of g : for $\varepsilon>0$ sufficiently small such that $\left|z_{0}\right|>\varepsilon$ and

$$
f(z)=\frac{h(z)}{\left(z-\frac{1}{z_{0}}\right)^{k}}
$$

for all $z \in B_{\varepsilon / 2}\left(\frac{1}{z_{0}}\right)$, thus

$$
g(z)=\frac{z^{k} z_{0}^{k} h(1 / z)}{\left(z_{0}-z\right)^{k}}
$$

(b) If z_{0} is a pole of g, there exists $\varepsilon>0$ such that $\forall z \in B_{\varepsilon}(0) \backslash\{0\}$ it holds that

$$
f(1 / z)=g(z)=\frac{h(z)}{z^{k}}
$$

for h holormorphic and non-zero in $B_{\varepsilon}(0)$. Thus, for $|1 / z| \leqslant \varepsilon$, that is $|z| \geqslant \varepsilon f$ is holormophic. Take $K=B_{\underline{2}}(0)$. Then $\{z: f(z)=\infty\}=\{z: f(z)=\infty\} \cap K$ which is finite, as we wanted.
(c) Since $z_{0}=0$ is a pole of order $k \geqslant 0$ of g we can write, for a $\delta>0$

$$
f(1 / z)=g(z)=\frac{a_{k}}{z^{k}}+\cdots \frac{a_{1}}{z}+h(z),
$$

for all $z \in B_{\delta}(0) \backslash\{0\}$ where h is holormophic in $B_{\delta}(0)$. This implies that h is bounded for $|z| \leqslant \delta / 2$. So we take $R=\frac{2}{\delta}$ and observe that whenever $|z|>R$:

$$
f(z)-a_{k} z^{k}+\cdots a_{1} z
$$

is holormophic and bounded for $|z|>R$.
(d) Now let z_{0} be a pole of order l of f, we know that there exists $\varepsilon>0$, $\left|z_{0}\right|+\varepsilon<R, t$ holomorphic in $B_{\varepsilon}\left(z_{0}\right)$ such that

$$
f(z)-\frac{a_{l}}{\left(z-z_{0}\right)^{l}}-\cdots-\frac{a_{1}}{z-z_{0}}=t(z)
$$

holds in $\forall z \in B_{\varepsilon}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$. Observe that t is bounded in $B_{\varepsilon / 2}\left(z_{0}\right)$ and that for $\left|z-z_{0}\right| \geqslant \varepsilon / 2$ it holds that

$$
\left|\frac{a_{l}}{\left(z-z_{0}\right)^{l}}+\cdots+\frac{a_{1}}{z-z_{0}}\right| \leqslant \sum_{n=1}^{l}\left|a_{n}\right| \frac{2}{\varepsilon} .
$$

We denote by $h_{z_{0}}(z)=\frac{a_{l}}{\left(z-z_{0}\right)^{t}}+\cdots+\frac{a_{1}}{z-z_{0}}$ and let

$$
\frac{p_{2}(z)}{q_{2}(z)}=\sum_{z_{0} \text { pole of } f} h_{z_{0}}(z) .
$$

Now we observe that $f-p_{1}(z)-\frac{p_{2}(z)}{q_{2}(z)}$ is bounded. Since $f-p_{1}(z)$ and $\frac{p_{2}(z)}{q_{2}(z)}$ are bounded for $|z|>K$ we can use triangle inequality in this region. In small balls around the poles we know that $f-\frac{p_{2}(z)}{q_{2}(z)}$ is bounded and $p_{1}(z)$ also is. For z in the complement of the all the regions considered we know that $f-p_{1}(z)-\frac{p_{2}(z)}{q_{2}(z)}$ is holormorphic and since the region is closed and bounded the function is bounded as well.
(e) Since $f-p_{1}(z)-\frac{p_{2}(z)}{q_{2}(z)}$ is holormophic and bounded it must be constant by Liouville's theorem. Thus

$$
f=c\left(p_{1}(z)-\frac{p_{2}(z)}{q_{2}(z)}\right)=\frac{p_{3}(z)}{q_{3}(z)} .
$$

4. Let $f \in \mathcal{H}(\mathbf{C})$ be a non-constant holomorphic function. Show that for any $w \in \mathbf{C}$ and any $\delta>0$, there exists $z \in \mathbf{C}$ such that $|f(z)-w|<\delta$.
Hint: if this were not true, consider the function $g(z)=1 /(f(z)-w)$.

Solution:

(Observe that we are asked to prove that $f(\mathbf{C})$ is dense in \mathbf{C}.)
By contradiction, suppose there exists $w \in \mathbb{C}$ and $\delta>0$ with $B_{\delta}(w) \cap f(\mathbb{C})=\varnothing$. Then $|f(z)-w| \geqslant \delta$ for all $z \in \mathbb{C}$ and thus the function is

$$
g: \mathbb{C} \rightarrow \mathbb{C}, z \mapsto \frac{1}{f(z)-w}
$$

holomorphic with $|g(z)| \leqslant \delta^{-1}$ for all $z \in \mathbb{C}$, thus bounded; consequently, according to Liouville g is constant. But then f is also constant, which is a contradiction.
5. Let $f \in \mathcal{H}\left(D_{1}(0)\right)$. We assume that $f(0)=0$ and that $|f(z)| \leqslant 1$ for all $z \in D_{1}(0)$.
(a) Show that the function $g: D_{1}^{*}(0) \rightarrow \mathbf{C}$ defined by $g(z)=f(z) / z$ is holomorphic on $D_{1}^{*}(0)$ with a removable singularity at 0 . We denote still by g the holomorphic extension of g to $D_{1}(0)$.
(b) Let $r \in] 0,1[$. Show that $|g(z)| \leqslant 1 / r$ if $|z|<r$.
(c) Deduce that $|f(z)| \leqslant|z|$ for all $z \in D_{1}(0)$.

Solution:

(a) Let $g(z)=f(z) / z$ in $\Omega \backslash\{0\}$ and observe that, since f is differentiable in 0 , we have

$$
\lim _{z \rightarrow 0} \frac{f(z)}{z}=f^{\prime}(0)
$$

thus the singularity must be removable.
(b) Consider $B_{r}(0)$, with $0<r<1$. By the maximum principle we know that g attains its maximum in the border, thus

$$
\max _{z \in B_{r}(0)}|g(z)|=\left|g\left(z_{r}\right)\right|=\frac{\left|f\left(z_{r}\right)\right|}{\left|z_{r}\right|} \leqslant \frac{1}{r} .
$$

(c) Letting $r \rightarrow 1$ in the inequality above we get that $|g(z)| \leqslant 1$ so $|f(z)| \leqslant|z|$ $\forall z \in D_{1}(0)$.

