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Exercise sheet 7

Exercise worth bonus points: Exercise 3

1. Show that for a > 0, we have

/+°° cos(z) e — me "

22 + a? a

o0

Hint: Observe that
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for all R > 0.
Solution:

Denote g(z) = Zer—ZaQ For R > a + 1 we integrate g in the closed path ~, given
by the boundary of the upper half of the disk of radius R with center zero, in the
counter-clockwise direction. The Residue Theorem gives us

eiz
dz = 2mi Res(g, ia).
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On the otherside, using line integrals we get
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Observe that
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where we used sin(t) > 0 for ¢ € [0, 7] and |R?*e** +a?| > R? —a?. Letting R — oo

and using that f_RR ;12112)2

/_OO Mdm = Re(27i Res(g, ia)).
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dx = 0, we conclude that

To compute the residue we write
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2. Let k > 1 be an integer and = > 0 a real number. Compute
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as a function of z, where 2* = exp(z log(x)) for all z € C.
Solution:

Observe that z = 0 is a pole of order k. We use the formula computed in the
previous exercise sheet to compute the residue:

z

X _ 1 : zlogx\(k—1) _ (10g(l})k_1
resz:o(?) 1) gg)(e =

3. Let f be a meromorphic function on C. Define g(z) = f(1/2) for z # 0 in C.
(a) Show that g € M(C*).
We assume from now on that g has a pole at zg = 0.

(b) Show that f has only finitely many poles in C.

(c) Show that there exist polynomials p; and ¢;, with ¢; # 0, and a real number
R > 0, such that the meromorphic function f — p;/q; is holomorphic and
bounded for |z| > R.

Hint: consider the principal part of g.

(d) Show that there exist polynomials ps and ¢o, with g2 # 0 such that the
meromorphic function f — p;/q; — p2/qo is holomorphic and bounded on C.

(e) Conclude that there exist polynomials ps and g3, with g3 # 0 such that
[ =nps/a.

Solutions:

(a) Let V={2€ C~{0}:9(z) =0} and U = {z € C~ {0} : f(2) = oo} and
consider K a compact set in C ~ {0}. Observe that there exists ¢ > 0 and
K > 0 such that Vz € K, ¢ < |z2| < K. Thus
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which has to be finite because f is meremorphic.

Since 1/z is holomorphic in C~\ {0} and f is holomorphic in U it follows that
f(1/2) has to be holormorphic in V. And, if zy is such that g(zy) = oo then



f has a pole in 1/z, thus zy has to be a pole of g: for € > 0 sufficiently small
such that |zg| > ¢ and

k)
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for all z € B.s(5;), thus
. 2F2Eh(1)2)
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If zo is a pole of g, there exists € > 0 such that Vz € B.(0) ~. {0} it holds that

h(z)
£/ = o(5) = "0
for h holormorphic and non-zero in B.(0). Thus, for |1/z| < ¢, thatis |z| > € f
is holormophic. Take K = B2(0). Then {z : f(2) = o0} ={z: f(2) = c0}NK
which is finite, as we wanted.

Since zg = 0 is a pole of order k£ > 0 of g we can write, for a § > 0
a a
f(1/2) = g(=) =+ +h(2),

for all z € Bs(0) ~ {0} where h is holormophic in Bs(0). This implies that
h is bounded for |z| < §/2. So we take R = 2 and observe that whenever
|z| > R:

f(2) —ap oz

is holormophic and bounded for |z| > R.

Now let zy be a pole of order [ of f, we know that there exists ¢ > 0,
|20] + € < R, t holomorphic in B.(zy) such that

ap a1

f@) = -~ = 1(2)

(z — 2p)! z— 2

holds in Vz € B.(2p) \ {20} . Observe that ¢ is bounded in B./5(%) and that
for |z — 2| > €/2 it holds that
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We denote by h,,(z) = ooy oo 2 and let
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qz(z) 2o pole of f
Now we observe that f — pi(2) — 528 is bounded. Since f — p;(2) and 1;22_53

are bounded for |z| > K we can use triangle inequality in this region. In
small balls around the poles we know that f — 222_(22) is bounded and p;(z) also
is. For z in the complement of the all the regions considered we know that
f = pi(2) = 222 is holormorphic and since the region is closed and bounded

a2(z
the function izs ounded as well.

(e) Since f —pi(z) — ’; 58 is holormophic and bounded it must be constant by
Liouville’s theorem. Thus

F=e () - 25 ) =2

4. Let f € H(C) be a non-constant holomorphic function. Show that for any w € C
and any d > 0, there exists z € C such that |f(z) — w| < 9.

Hint: if this were not true, consider the function g(z) = 1/(f(z) — w).

Solution:

(Observe that we are asked to prove that f(C) is dense in C.)

By contradiction, suppose there exists w € C and § > 0 with Bs(w) N f(C) = @.
Then |f(z) —w| = § for all z € C and thus the function is

o
f(z) —w

holomorphic with |g(z)] < 6! for all z € C, thus bounded; consequently, according
to Liouville ¢ is constant. But then f is also constant, which is a contradiction.

g:C—=C, z—

5. Let f € H(D1(0)). We assume that f(0) = 0 and that |f(2)| < 1 for all z € D;(0).

(a) Show that the function g: Dj(0) — C defined by g(z) = f(z)/z is holomor-
phic on Dj(0) with a removable singularity at 0. We denote still by g the
holomorphic extension of g to D1(0).

(b) Let r €]0, 1[. Show that |g(z)| < 1/r if |z] <.
(c¢) Deduce that |f(2)| < |z| for all z € D;(0).

Solution:



(a) Let g(z) = f(2)/z in Q ~ {0} and observe that, since f is differentiable in 0,
we have

lim /(z)

z—0 z

= /'(0),

thus the singularity must be removable.

(b) Consider B,(0), with 0 < r < 1. By the maximum principle we know that ¢
attains its maximum in the border, thus

max 19(2)| = lg(2r)| =

(c) Letting r — 1 in the inequality above we get that |g(2)] < 1 so |f(2)| < |7]
Vz € Dl(())



