D-MATH Prof. Emmanuel Kowalski

Exercise sheet 8

Exercise worth bonus points: Exercise 1

1. For $z \in \mathbf{C}$ such that $\sin(z) \neq 0$, we denote

$$\cot(z) = \frac{\cos(z)}{\sin(z)} = i \frac{e^{iz} + e^{-iz}}{e^{iz} - e^{-iz}}.$$

- (a) Show that $\cot a \in \mathcal{M}(\mathbf{C})$ and determine its poles and the corresponding residues.
- (b) Let u be a complex number which is not an integer, and let

$$f(z) = \frac{\pi \cot(\pi z)}{(u+z)^2}.$$

Show that $f \in \mathcal{M}(\mathbf{C})$ and determine its poles and the corresponding residues.

(c) Let $n \ge 1$ be an integer such that n > |u|. Compute the integral

$$\int_{\gamma_n} f(z) dz$$

where γ_n is the circle of radius n + 1/2 oriented counterclockwise.

(d) Deduce that

$$\lim_{n \to +\infty} \sum_{k=-n}^{n} \frac{1}{(u+k)^2} = \frac{\pi^2}{(\sin \pi u)^2}.$$

2. Let w_0 be a complex number such that $|w_0| < 1$. Show that

$$B(z) = \frac{w_0 - z}{1 - \bar{w}_0 z}$$

defines a function with the following properties:

- (a) It is a holomorphic function on $D_1(0)$ with values in $D_1(0)$;
- (b) $B(w_0) = 0$ and $B(0) = w_0$;
- (c) |B(z)| = 1 if |z| = 1;
- (d) B is bijective from $D_1(0)$ to $D_1(0)$.

Bitte wenden.

- 3. Let $U \subset \mathbf{C}$ be an open set containing the closed unit disc $\overline{D}_1(0)$. Let $f \in \mathcal{H}(U)$, and assume that f is not constant. Suppose further that |f(z)| = 1 if |z| = 1.
 - (a) Show that $m = \min_{|z| \leq 1} |f(z)|$ exists, and that it is strictly less than 1. (Hint: show that $m \leq 1$, and that f would be constant if there was equality, using the maximum modulus principle.)
 - (b) Show that m = 0. (Hint: if m > 0, prove that we would have m = 1, by considering the function g = 1/f.)
 - (c) Deduce that there exists $z \in D_1(0)$ such that f(z) = 0.
 - (d) Show that for any $w \in D_1(0)$, there exists z such that f(z) = w. (Hint: apply the previous question to an auxiliary function constructed using Exercise 2.)
- 4. Let r > 1 be a real number and let f and g be functions holomorphic in $D_r(0)$. We assume that for $|z| \leq 1$, we have f(z) = 0 if and only if z = 0, and that $\operatorname{ord}_0(f) = 1$. We also assume that g is not the zero function.

For $\varepsilon \in \mathbf{C}$, we denote

$$f_{\varepsilon}(z) = f(z) + \varepsilon g(z).$$

- (a) Show that there exists a real number $\delta > 0$ such that we have $|f(z)/g(z)| \ge \delta$ if z satisfies |z| = 1 and $g(z) \ne 0$.
- (b) Show that if $|\varepsilon| < \delta$, the function f_{ε} is holomorphic on $D_r(0)$ and there is a unique z_{ε} such that $|z_{\varepsilon}| \leq 1$ and $f_{\varepsilon}(z_{\varepsilon}) = 0$. We denote by Z the map from $D_{\delta}(0)$ to $\overline{D}_1(0)$ such that $Z(\varepsilon) = z_{\varepsilon}$.
- (c) Prove that for $|\varepsilon| < \delta$, we have $|z_{\varepsilon}| < 1$.
- (d) Let (ε_n) be a sequence with $|\varepsilon_n| < \delta$ which converges to $\varepsilon \in D_{\delta}(0)$. If $Z(\varepsilon_n)$ converges to some complex number z, show that $z = Z(\varepsilon)$. (Hint: use the uniqueness of $Z(\varepsilon)$.)
- (e) Show that Z is continuous. (Hint: use the following fact from analysis: if a bounded sequence (w_n) of complex numbers has the property that all convergent subsequences (w_{n_k}) have the same limit w, then (w_n) converges to w.)