Exercise sheet 8

Exercise worth bonus points: Exercise 1

1. For $z \in \mathbf{C}$ such that $\sin (z) \neq 0$, we denote

$$
\operatorname{cotan}(z)=\frac{\cos (z)}{\sin (z)}=i \frac{e^{i z}+e^{-i z}}{e^{i z}-e^{-i z}} .
$$

(a) Show that cotan $\in \mathcal{M}(\mathbf{C})$ and determine its poles and the corresponding residues.
(b) Let u be a complex number which is not an integer, and let

$$
f(z)=\frac{\pi \operatorname{cotan}(\pi z)}{(u+z)^{2}}
$$

Show that $f \in \mathcal{M}(\mathbf{C})$ and determine its poles and the corresponding residues.
(c) Let $n \geqslant 1$ be an integer such that $n>|u|$. Compute the integral

$$
\int_{\gamma_{n}} f(z) d z
$$

where γ_{n} is the circle of radius $n+1 / 2$ oriented counterclockwise.
(d) Deduce that

$$
\lim _{n \rightarrow+\infty} \sum_{k=-n}^{n} \frac{1}{(u+k)^{2}}=\frac{\pi^{2}}{(\sin \pi u)^{2}}
$$

2. Let w_{0} be a complex number such that $\left|w_{0}\right|<1$. Show that

$$
B(z)=\frac{w_{0}-z}{1-\bar{w}_{0} z}
$$

defines a function with the following properties:
(a) It is a holomorphic function on $D_{1}(0)$ with values in $D_{1}(0)$;
(b) $B\left(w_{0}\right)=0$ and $B(0)=w_{0}$;
(c) $|B(z)|=1$ if $|z|=1$;
(d) B is bijective from $D_{1}(0)$ to $D_{1}(0)$.
3. Let $U \subset \mathbf{C}$ be an open set containing the closed unit disc $\bar{D}_{1}(0)$. Let $f \in \mathcal{H}(U)$, and assume that f is not constant. Suppose further that $|f(z)|=1$ if $|z|=1$.
(a) Show that $m=\min _{|z| \leqslant 1}|f(z)|$ exists, and that it is strictly less than 1 . (Hint: show that $m \leqslant 1$, and that f would be constant if there was equality, using the maximum modulus principle.)
(b) Show that $m=0$. (Hint: if $m>0$, prove that we would have $m=1$, by considering the function $g=1 / f$.)
(c) Deduce that there exists $z \in D_{1}(0)$ such that $f(z)=0$.
(d) Show that for any $w \in D_{1}(0)$, there exists z such that $f(z)=w$. (Hint: apply the previous question to an auxiliary function constructed using Exercise 2.)
4. Let $r>1$ be a real number and let f and g be functions holomorphic in $D_{r}(0)$. We assume that for $|z| \leqslant 1$, we have $f(z)=0$ if and only if $z=0$, and that $\operatorname{ord}_{0}(f)=1$. We also assume that g is not the zero function.
For $\varepsilon \in \mathbf{C}$, we denote

$$
f_{\varepsilon}(z)=f(z)+\varepsilon g(z) .
$$

(a) Show that there exists a real number $\delta>0$ such that we have $|f(z) / g(z)| \geqslant \delta$ if z satisfies $|z|=1$ and $g(z) \neq 0$.
(b) Show that if $|\varepsilon|<\delta$, the function f_{ε} is holomorphic on $D_{r}(0)$ and there is a unique z_{ε} such that $\left|z_{\varepsilon}\right| \leqslant 1$ and $f_{\varepsilon}\left(z_{\varepsilon}\right)=0$. We denote by Z the map from $D_{\delta}(0)$ to $\bar{D}_{1}(0)$ such that $Z(\varepsilon)=z_{\varepsilon}$.
(c) Prove that for $|\varepsilon|<\delta$, we have $\left|z_{\varepsilon}\right|<1$.
(d) Let $\left(\varepsilon_{n}\right)$ be a sequence with $\left|\varepsilon_{n}\right|<\delta$ which converges to $\varepsilon \in D_{\delta}(0)$. If $Z\left(\varepsilon_{n}\right)$ converges to some complex number z, show that $z=Z(\varepsilon)$. (Hint: use the uniqueness of $Z(\varepsilon)$.)
(e) Show that Z is continuous. (Hint: use the following fact from analysis: if a bounded sequence $\left(w_{n}\right)$ of complex numbers has the property that all convergent subsequences ($w_{n_{k}}$) have the same limit w, then $\left(w_{n}\right)$ converges to w.)

