Exercise sheet 8

Exercise worth bonus points: Exercise 1

1. For $z \in \mathbf{C}$ such that $\sin (z) \neq 0$, we denote

$$
\operatorname{cotan}(z)=\frac{\cos (z)}{\sin (z)}=i \frac{e^{i z}+e^{-i z}}{e^{i z}-e^{-i z}} .
$$

(a) Show that cotan $\in \mathcal{M}(\mathbf{C})$ and determine its poles and the corresponding residues.
(b) Let u be a complex number which is not an integer, and let

$$
f(z)=\frac{\pi \operatorname{cotan}(\pi z)}{(u+z)^{2}}
$$

Show that $f \in \mathcal{M}(\mathbf{C})$ and determine its poles and the corresponding residues.
(c) Let n be an integer such that $|n|>|u|$. Compute the integral

$$
\int_{\gamma} f(z) d z
$$

where γ_{n} is the circle of radius $n+1 / 2$ oriented counterclockwise.
(d) Deduce that

$$
\lim _{n \rightarrow+\infty} \sum_{k=-n}^{n} \frac{1}{(u+k)^{2}}=\frac{\pi^{2}}{(\sin \pi u)^{2}}
$$

Solution:

(a) Observe that $\sin (z)=0 \Leftrightarrow z=k \pi$, for $k \in \mathbf{Z}$. Denote $U=\{z \in \mathbf{C}$: $z \neq k \pi\}$ and observe that $\operatorname{cotan}(z)$ is holomorphic in U. For $z=\pi k$ we have $\lim _{z \rightarrow \pi k} \frac{\cos (z)}{\sin (z)}=+\infty$. Also, given any compact $K \subset \mathbf{C}$ we have $|K \cup(\mathbf{C} \backslash U)|<$ ∞, so we conclude that cotan is a meromorphic function in $C c$.
The poles of the function are given by $z=\pi k$ for $k \in \mathbf{Z}$ and we compute the residues:

$$
\frac{\cos (z)}{\sin (z)}=\frac{(-1)^{k}+(-1)^{k+1} \frac{(z-\pi k)^{2}}{2!}+O\left((z-\pi k)^{4}\right)}{(-1)^{k}(z-\pi k)+(-1)^{k+1} \frac{(z-\pi k)^{3}}{3!}+O\left((z-\pi k)^{5}\right)}
$$

thus,

$$
\lim _{z \rightarrow \pi k}(z-\pi k) \frac{\cos (z)}{\sin (z)}=1
$$

and we conclude that $\operatorname{res}_{\pi k}(f)=1$.
(b) Observe that $\pi \operatorname{cotan}(\pi z)$ and $\frac{1}{(u+z)^{2}}$ are meromorphic functions in \mathbf{C} so we conclude that f is also meromorphic in \mathbf{C}. The poles of the function are given by $\{z=k, k \in \mathbf{Z}\} \cup\{-u\}$ and

$$
\operatorname{res}_{k}(f)=\lim _{\substack{z \rightarrow k \\ z \neq k}}(z-\pi k) \frac{\pi \operatorname{cotan}(\pi z)}{(u+z)^{2}}=\frac{1}{(u+k)^{2}} .
$$

Observe that $-u$ is a pole of order 2 if $u \neq n+\frac{1}{2}$ with residue given by:

$$
\lim _{\substack{z \rightarrow-u \\ z \neq-u}}(\pi \operatorname{cotan}(\pi z))^{\prime}=-\frac{\pi^{2}}{\sin ^{2}(\pi u)}
$$

If $u=n+\frac{1}{2}$ then the pole is of order 1 and the residue is given by:

$$
\lim _{\substack{z \rightarrow-u \\ z \neq-u}} \frac{\pi \operatorname{cotan}(\pi z)}{u+z}=-\pi^{2}=-\frac{\pi^{2}}{\sin ^{2}(\pi u)}
$$

(c) Observe that γ_{n} doesn't intersect with any of f poles. So, by the Residue's Theorem we conclude that

$$
\int_{\gamma_{n}} f(z) d z=2 \pi i\left(\sum_{|k|<n} \frac{1}{(u+k)^{2}}-\frac{\pi^{2}}{\sin ^{2}(\pi u)}\right)
$$

(d) To prove the result it is enough to show that

$$
\lim _{n \rightarrow \infty} \int_{\gamma_{n}} f(z) d z=0
$$

First observe that $\cot (\pi z)$ is bounded for $\operatorname{Im}(z)>1$. It holds that

$$
|\operatorname{cotan}(\pi z)|=\left|\frac{i\left(e^{2 i z}+1\right)}{e^{2 i z}-1}\right| \leqslant \frac{e^{-2 \operatorname{Im}(z)}+1}{1-e^{-2 \operatorname{Im}(z)}} \leqslant C_{1}
$$

If $\operatorname{Im}(z)<-1$ then

$$
|\operatorname{cotan}(\pi z)|=\left|\frac{i\left(e^{2 i z}+1\right)}{e^{2 i z}-1}\right| \leqslant \frac{e^{2 \operatorname{Im}(z)}+1}{e^{2 \operatorname{Im}(z)}-1} \leqslant C_{2} .
$$

We also observe that if z is of the form $N+\frac{1}{2}+i t$ or $-N-\frac{1}{2}+i t$, with $t \in \mathbb{R}$ we can also control $\operatorname{cotan}(\pi z)$.

$$
\left|\operatorname{cotan}\left(\pi\left(N+\frac{1}{2}+i t\right)\right)\right|=\left|\frac{-e^{-2 \pi t}+1}{-e^{-2 \pi t}-1}\right| \leqslant C^{\prime}
$$

We can bound $\operatorname{cotan}(\pi z)$ in a vertical strip centered $n+1 / 2$ uniformly in n, and we know that for n big enough $\gamma_{n}(t)$, for $\left|\operatorname{Im}\left(\gamma_{n}(t)\right)\right|<1$ is contained in this strip. Thus,

$$
\left|\int_{\gamma_{n}} f(z) d z\right| \leqslant \tilde{C} \frac{n+\frac{1}{2}}{\left(n+\frac{1}{2}-|u|\right)^{2}},
$$

which goes to zero as $n \rightarrow \infty$.
2. Let w_{0} be a complex number such that $\left|w_{0}\right|<1$. Show that

$$
B(z)=\frac{w_{0}-z}{1-\bar{w}_{0} z}
$$

defines a function with the following properties:
(a) It is a holomorphic function on $D_{1}(0)$ with values in $D_{1}(0)$;
(b) $B\left(w_{0}\right)=0$ and $B(0)=w_{0}$;
(c) $|B(z)|=1$ if $|z|=1$;
(d) B is bijective.

Solution:

First observe that $1-\overline{w_{0}} z=0 \Leftrightarrow z=\frac{1}{\overline{w_{0}}}$ and since $\left|w_{0}\right|<1$ it holds that $\frac{1}{\left|w_{0}\right|}>1$, so B is holormophic in $D_{1}(0)$. We prove (c): if $z=e^{i \theta}$ then

$$
\left|B\left(e^{i \theta}\right)\right|=\frac{\left|w_{0}-e^{i \theta}\right|}{\left|1-\bar{w}_{0} e^{i \theta}\right|}=\frac{\left|1-w_{0} e^{-i \theta}\right|}{\left|1-\bar{w}_{0} e^{i \theta}\right|}=1,
$$

thus B takes the boundary of the disc to itself. Thus, by the Maximum Modulus Principle we conclude that B takes values in $D_{1}(0)$.
Observe that B is injective: if $z_{1} \neq z_{2}$ then

$$
\frac{w_{0}-z_{1}}{1-\bar{w}_{0} z_{1}}=\frac{w_{0}-z_{2}}{1-\bar{w}_{0} z_{2}} \Leftrightarrow z_{1}=z_{2}
$$

We can also show that B is surjective: let $\zeta \in D_{1}(0)$ then

$$
\zeta=\frac{w_{0}-z}{1-\overline{w_{0}} z} \Leftrightarrow z=\frac{w_{0}-\zeta}{1-\zeta \overline{w_{0}}}
$$

since $|\zeta|<1$ and we conclude that $|z|<1$ and B is surjective.
3. Let $U \subset \mathbf{C}$ be an open set containing the unit disc $\bar{D}_{1}(0)$. Let $f \in \mathcal{H}(U)$, and assume that f is not constant. Suppose further that $|f(z)|=1$ if $|z|=1$.
(a) Show that there exists $z \in D_{1}(0)$ such that $f(z)=0$.
(b) Show that for any $w \in D_{1}(0)$, there exists z such that $f(z)=w$. (Hint: apply the previous question to an auxiliary function constructed using Exercise 2.)

Solution:

(a) First we observe that from the Maximum Modulus Principle it holds that $|f(z)| \leqslant 1$ for $z \in D_{1}(0)$. We suppose that f has no zeros in $D_{1}(0)$. Since $|f(z)|=1$ for $|z|=1$ we can take \tilde{U} open set satisfying $f(z) \neq 0 \forall z \in D_{1}(0)$ and $\overline{D_{1}(0)} \subset \tilde{U}$. We define $G: \tilde{U} \rightarrow \mathbf{C}, G(z)=\frac{1}{f(z)}$. Observe that $|G(z)|=$ 1 whenever $|z|=1$ so, by the Maximum Modulus Principle it holds that $|G(z)| \leqslant 1$ for $z \in D_{1}(0)$, which is a contraction.
(b) Let U^{\star} be an open set such that $f(z) \neq \frac{1}{\bar{w}}$ and $\overline{D_{1}(0)} \subset U^{\star}$ (which exists since $|f(z)|=1$ for $|z|=1$). Define the function

$$
\begin{array}{r}
G: U^{\star} \rightarrow \mathbf{C} \\
z \mapsto \frac{w-f(z)}{1-\bar{w} f(z)}
\end{array}
$$

From the previous exercise we can see that G maps $D_{1}(0)$ to $D_{1}(0)$ and that $|G(z)|=1$ for $|z|=1$. We can then conclude using the previous item that there exists z_{0} such that $G\left(z_{0}\right)=0 \Rightarrow f(z)=w$, as we wanted to show.
4. Let $r>1$ be a real number and let f and g be functions holomorphic in $D_{r}(0)$. We assume that for $|z| \leqslant 1$, we have $f(z)=0$ if and only if $z=0$, and that $\operatorname{ord}_{0}(f)=1$. We also assume that g is not the zero function.

For $\varepsilon \in \mathbf{C}$, we denote

$$
f_{\varepsilon}(z)=f(z)+\varepsilon g(z)
$$

(a) Show that there exists a real number $\delta>0$ such that we have $|f(z) / g(z)| \geqslant \delta$ if z satisfies $|z|=1$ and $g(z) \neq 0$.
(b) Show that if $|\varepsilon|<\delta$, the function f_{ε} is holomorphic on $D_{r}(0)$ and there is a unique z_{ε} such that $\left|z_{\varepsilon}\right| \leqslant 1$ and $f_{\varepsilon}\left(z_{\varepsilon}\right)=0$. We denote by Z the map from $D_{\delta}(0)$ to $\bar{D}_{1}(0)$ such that $Z(\varepsilon)=z_{\varepsilon}$.
(c) Prove that for $|\varepsilon|<\delta$, we have $\left|z_{\varepsilon}\right|<1$.
(d) Let $\left(\varepsilon_{n}\right)$ be a sequence with $\left|\varepsilon_{n}\right|<\delta$ which converges to $\varepsilon \in D_{\delta}(0)$. If $Z\left(\varepsilon_{n}\right)$ converges to some complex number z, show that $z=Z(\varepsilon)$. (Hint: use the uniqueness of $Z(\varepsilon)$.)
(e) Show that Z is continuous. (Hint: use the following fact from analysis: if a bounded sequence (w_{n}) of complex numbers has the property that all convergent subsequences $\left(w_{n_{k}}\right)$ have the same limit w, then $\left(w_{n}\right)$ converges to w.)

Solution:

(a) Let $M=\sup _{|z|=1}|g(z)|$. Observe that there exists K such that $|f(z)| \geqslant K$ for $|z|=1$ since we know that $f(z) \neq 0 \quad \forall|z|=1$. Thus, if $|z|=1$ and $g(z) \neq 0$ we have

$$
\left|\frac{f(z)}{g(z)}\right| \geqslant \frac{K}{M} .
$$

We let $\delta:=\frac{K}{M}$.
(b) Let $|\varepsilon|<\delta$. For $|z|=1$ it holds that

$$
|f(z)+\varepsilon g(z)-f(z)|=|\varepsilon g(z)|<\delta|g(z)| \leqslant|f(z)|
$$

so from Rouche's Theorem we conclude that f and f_{ε} have the same number of zeros in $D_{1}(0)$. Since f has only one zero with multiplicity 1 , we conclude that there exists a unique zero $z_{\varepsilon}, f_{\varepsilon}\left(z_{\varepsilon}\right)=0$.
(c) This follows directly from Rouche's theorem.
(d) Let $\varepsilon_{n} \rightarrow \varepsilon$ and suppose that $z_{\varepsilon_{n}} \rightarrow z$. Then, we know that

$$
f\left(z_{\varepsilon_{n}}\right)+\varepsilon_{n} g\left(z_{\varepsilon_{n}}\right)=0,
$$

and when we let $n \rightarrow \infty$ we get

$$
f(z)+\varepsilon(z)=0,
$$

observe that $|\varepsilon|<\delta$ and from uniqueness proved in item (b) we conclude that $z=Z(\varepsilon)$.
(e) To prove that Z is continuous we take $\varepsilon_{n} \rightarrow \varepsilon,\left|\varepsilon_{n}\right|,|\varepsilon|<\delta$. We know that $\left|Z\left(\varepsilon_{n}\right)\right|<1$. Let $Z\left(\varepsilon_{n_{k}}\right)$ be a convergent subsequence of $Z\left(\varepsilon_{n}\right)$. From the previous item we conclude that it has to converge to $Z(\varepsilon)$. Since this holds for every convergent subsequence of $Z\left(\varepsilon_{n}\right)$, which is a bounded sequence, we conclude that $Z\left(\varepsilon_{n}\right) \rightarrow Z(\varepsilon)$.

