D-MATH Prof. Emmanuel Kowalski

Exercise sheet 8

Exercise worth bonus points: Exercise 1

1. For $z \in \mathbf{C}$ such that $\sin(z) \neq 0$, we denote

$$\cot(z) = \frac{\cos(z)}{\sin(z)} = i \frac{e^{iz} + e^{-iz}}{e^{iz} - e^{-iz}}.$$

- (a) Show that $\cot a \in \mathcal{M}(\mathbf{C})$ and determine its poles and the corresponding residues.
- (b) Let u be a complex number which is not an integer, and let

$$f(z) = \frac{\pi \cot(\pi z)}{(u+z)^2}.$$

Show that $f \in \mathcal{M}(\mathbf{C})$ and determine its poles and the corresponding residues.

(c) Let n be an integer such that |n| > |u|. Compute the integral

$$\int_{\gamma} f(z) dz$$

where γ_n is the circle of radius n + 1/2 oriented counterclockwise.

(d) Deduce that

$$\lim_{n \to +\infty} \sum_{k=-n}^{n} \frac{1}{(u+k)^2} = \frac{\pi^2}{(\sin \pi u)^2}.$$

Solution:

(a) Observe that $\sin(z) = 0 \Leftrightarrow z = k\pi$, for $k \in \mathbf{Z}$. Denote $U = \{z \in \mathbf{C} : z \neq k\pi\}$ and observe that $\operatorname{cotan}(z)$ is holomorphic in U. For $z = \pi k$ we have $\lim_{z \to \pi k} \frac{\cos(z)}{\sin(z)} = +\infty$. Also, given any compact $K \subset \mathbf{C}$ we have $|K \cup (\mathbf{C} \setminus U)| < \infty$, so we conclude that cotan is a meromorphic function in Cc.

The poles of the function are given by $z = \pi k$ for $k \in \mathbb{Z}$ and we compute the residues:

$$\frac{\cos(z)}{\sin(z)} = \frac{(-1)^k + (-1)^{k+1} \frac{(z-\pi k)^2}{2!} + O((z-\pi k)^4)}{(-1)^k (z-\pi k) + (-1)^{k+1} \frac{(z-\pi k)^3}{3!} + O((z-\pi k)^5)},$$

Bitte wenden.

thus,

$$\lim_{z \to \pi k} (z - \pi k) \frac{\cos(z)}{\sin(z)} = 1,$$

and we conclude that $\operatorname{res}_{\pi k}(f) = 1$.

(b) Observe that $\pi \operatorname{cotan}(\pi z)$ and $\frac{1}{(u+z)^2}$ are meromorphic functions in **C** so we conclude that f is also meromorphic in **C**. The poles of the function are given by $\{z = k, k \in \mathbf{Z}\} \cup \{-u\}$ and

$$\operatorname{res}_{k}(f) = \lim_{\substack{z \to k \\ z \neq k}} (z - \pi k) \frac{\pi \operatorname{cotan}(\pi z)}{(u + z)^{2}} = \frac{1}{(u + k)^{2}}.$$

Observe that -u is a pole of order 2 if $u \neq n + \frac{1}{2}$ with residue given by:

$$\lim_{\substack{z \to -u \\ z \neq -u}} (\pi \operatorname{cotan}(\pi z))' = -\frac{\pi^2}{\sin^2(\pi u)}.$$

If $u = n + \frac{1}{2}$ then the pole is of order 1 and the residue is given by:

$$\lim_{\substack{z \to -u \\ z \neq -u}} \frac{\pi \cot(\pi z)}{u + z} = -\pi^2 = -\frac{\pi^2}{\sin^2(\pi u)}.$$

(c) Observe that γ_n doesn't intersect with any of f poles. So, by the Residue's Theorem we conclude that

$$\int_{\gamma_n} f(z) dz = 2\pi i \left(\sum_{|k| < n} \frac{1}{(u+k)^2} - \frac{\pi^2}{\sin^2(\pi u)} \right)$$

(d) To prove the result it is enough to show that

$$\lim_{n\to\infty}\int_{\gamma_n}f(z)dz=0.$$

First observe that $\cot(\pi z)$ is bounded for $\operatorname{Im}(z) > 1$. It holds that

$$|\cot(\pi z)| = \left|\frac{i(e^{2iz}+1)}{e^{2iz}-1}\right| \leq \frac{e^{-2\operatorname{Im}(z)}+1}{1-e^{-2\operatorname{Im}(z)}} \leq C_1$$

If $\operatorname{Im}(z) < -1$ then

$$|\cot(\pi z)| = \left| \frac{i(e^{2iz} + 1)}{e^{2iz} - 1} \right| \leq \frac{e^{2\operatorname{Im}(z)} + 1}{e^{2\operatorname{Im}(z)} - 1} \leq C_2$$

We also observe that if z is of the form $N + \frac{1}{2} + it$ or $-N - \frac{1}{2} + it$, with $t \in \mathbb{R}$ we can also control $\cot(\pi z)$.

$$\left|\cot\left(\pi\left(N+\frac{1}{2}+it\right)\right)\right| = \left|\frac{-e^{-2\pi t}+1}{-e^{-2\pi t}-1}\right| \leqslant C'.$$

We can bound $\cot(\pi z)$ in a vertical strip centered n + 1/2 uniformly in n, and we know that for n big enough $\gamma_n(t)$, for $|\operatorname{Im}(\gamma_n(t))| < 1$ is contained in this strip. Thus,

$$\left| \int_{\gamma_n} f(z) dz \right| \leqslant \tilde{C} \frac{n + \frac{1}{2}}{(n + \frac{1}{2} - |u|)^2},$$

which goes to zero as $n \to \infty$.

2. Let w_0 be a complex number such that $|w_0| < 1$. Show that

$$B(z) = \frac{w_0 - z}{1 - \bar{w}_0 z}$$

defines a function with the following properties:

- (a) It is a holomorphic function on $D_1(0)$ with values in $D_1(0)$;
- (b) $B(w_0) = 0$ and $B(0) = w_0$;
- (c) |B(z)| = 1 if |z| = 1;
- (d) B is bijective.

Solution:

First observe that $1 - \overline{w_0}z = 0 \Leftrightarrow z = \frac{1}{\overline{w_0}}$ and since $|w_0| < 1$ it holds that $\frac{1}{|w_0|} > 1$, so *B* is holormophic in $D_1(0)$. We prove (c): if $z = e^{i\theta}$ then

$$|B(e^{i\theta})| = \frac{|w_0 - e^{i\theta}|}{|1 - \bar{w}_0 e^{i\theta}|} = \frac{|1 - w_0 e^{-i\theta}|}{|1 - \bar{w}_0 e^{i\theta}|} = 1,$$

thus B takes the boundary of the disc to itself. Thus, by the Maximum Modulus Principle we conclude that B takes values in $D_1(0)$.

Observe that B is injective: if $z_1 \neq z_2$ then

Bitte wenden.

$$\frac{w_0 - z_1}{1 - \bar{w}_0 z_1} = \frac{w_0 - z_2}{1 - \bar{w}_0 z_2} \Leftrightarrow z_1 = z_2.$$

We can also show that B is surjective: let $\zeta \in D_1(0)$ then

$$\zeta = \frac{w_0 - z}{1 - \overline{w_0} z} \Leftrightarrow z = \frac{w_0 - \zeta}{1 - \zeta \overline{w_0}}$$

since $|\zeta| < 1$ and we conclude that |z| < 1 and B is surjective.

- 3. Let $U \subset \mathbf{C}$ be an open set containing the unit disc $D_1(0)$. Let $f \in \mathcal{H}(U)$, and assume that f is not constant. Suppose further that |f(z)| = 1 if |z| = 1.
 - (a) Show that there exists $z \in D_1(0)$ such that f(z) = 0.
 - (b) Show that for any $w \in D_1(0)$, there exists z such that f(z) = w. (Hint: apply the previous question to an auxiliary function constructed using Exercise 2.)

Solution:

- (a) First we observe that from the Maximum Modulus Principle it holds that $|f(z)| \leq 1$ for $z \in D_1(0)$. We suppose that f has no zeros in $D_1(0)$. Since |f(z)| = 1 for |z| = 1 we can take \tilde{U} open set satisfying $f(z) \neq 0 \forall z \in D_1(0)$ and $\overline{D_1(0)} \subset \tilde{U}$. We define $G: \tilde{U} \to \mathbf{C}$, $G(z) = \frac{1}{f(z)}$. Observe that |G(z)| = 1 whenever |z| = 1 so, by the Maximum Modulus Principle it holds that $|G(z)| \leq 1$ for $z \in D_1(0)$, which is a contraction.
- (b) Let U^* be an open set such that $f(z) \neq \frac{1}{\overline{w}}$ and $\overline{D_1(0)} \subset U^*$ (which exists since |f(z)| = 1 for |z| = 1). Define the function

$$\begin{aligned} G: U^{\star} &\to \mathbf{C} \\ z &\mapsto \frac{w - f(z)}{1 - \overline{w} f(z)}. \end{aligned}$$

From the previous exercise we can see that G maps $D_1(0)$ to $D_1(0)$ and that |G(z)| = 1 for |z| = 1. We can then conclude using the previous item that there exists z_0 such that $G(z_0) = 0 \Rightarrow f(z) = w$, as we wanted to show.

4. Let r > 1 be a real number and let f and g be functions holomorphic in $D_r(0)$. We assume that for $|z| \leq 1$, we have f(z) = 0 if and only if z = 0, and that $\operatorname{ord}_0(f) = 1$. We also assume that g is not the zero function.

For $\varepsilon \in \mathbf{C}$, we denote

$$f_{\varepsilon}(z) = f(z) + \varepsilon g(z)$$

- (a) Show that there exists a real number $\delta > 0$ such that we have $|f(z)/g(z)| \ge \delta$ if z satisfies |z| = 1 and $g(z) \ne 0$.
- (b) Show that if $|\varepsilon| < \delta$, the function f_{ε} is holomorphic on $D_r(0)$ and there is a unique z_{ε} such that $|z_{\varepsilon}| \leq 1$ and $f_{\varepsilon}(z_{\varepsilon}) = 0$. We denote by Z the map from $D_{\delta}(0)$ to $\overline{D}_1(0)$ such that $Z(\varepsilon) = z_{\varepsilon}$.
- (c) Prove that for $|\varepsilon| < \delta$, we have $|z_{\varepsilon}| < 1$.
- (d) Let (ε_n) be a sequence with $|\varepsilon_n| < \delta$ which converges to $\varepsilon \in D_{\delta}(0)$. If $Z(\varepsilon_n)$ converges to some complex number z, show that $z = Z(\varepsilon)$. (Hint: use the uniqueness of $Z(\varepsilon)$.)
- (e) Show that Z is continuous. (Hint: use the following fact from analysis: if a bounded sequence (w_n) of complex numbers has the property that all convergent subsequences (w_{n_k}) have the same limit w, then (w_n) converges to w.)

Solution:

(a) Let $M = \sup_{|z|=1} |g(z)|$. Observe that there exists K such that $|f(z)| \ge K$ for |z| = 1 since we know that $f(z) \ne 0 \forall |z| = 1$. Thus, if |z| = 1 and $g(z) \ne 0$ we have

$$\left|\frac{f(z)}{g(z)}\right| \ge \frac{K}{M}$$

We let $\delta := \frac{K}{M}$.

(b) Let $|\varepsilon| < \delta$. For |z| = 1 it holds that

$$|f(z) + \varepsilon g(z) - f(z)| = |\varepsilon g(z)| < \delta |g(z)| \le |f(z)|,$$

so from Rouche's Theorem we conclude that f and f_{ε} have the same number of zeros in $D_1(0)$. Since f has only one zero with multiplicity 1, we conclude that there exists a unique zero z_{ε} , $f_{\varepsilon}(z_{\varepsilon}) = 0$.

- (c) This follows directly from Rouche's theorem.
- (d) Let $\varepsilon_n \to \varepsilon$ and suppose that $z_{\varepsilon_n} \to z$. Then, we know that

$$f(z_{\varepsilon_n}) + \varepsilon_n g(z_{\varepsilon_n}) = 0,$$

and when we let $n \to \infty$ we get

$$f(z) + \varepsilon(z) = 0,$$

observe that $|\varepsilon| < \delta$ and from uniqueness proved in item (b) we conclude that $z = Z(\varepsilon)$.

(e) To prove that Z is continuous we take $\varepsilon_n \to \varepsilon$, $|\varepsilon_n|, |\varepsilon| < \delta$. We know that $|Z(\varepsilon_n)| < 1$. Let $Z(\varepsilon_{n_k})$ be a convergent subsequence of $Z(\varepsilon_n)$. From the previous item we conclude that it has to converge to $Z(\varepsilon)$. Since this holds for every convergent subsequence of $Z(\varepsilon_n)$, which is a bounded sequence, we conclude that $Z(\varepsilon_n) \to Z(\varepsilon)$.