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Exercise sheet 8

Exercise worth bonus points: Exercise 1

1. For z € C such that sin(z) # 0, we denote

cos(z)  eF 4 et
cotan(z) = Sn(2) =l

(a) Show that cotan € M(C) and determine its poles and the corresponding
residues.

(b) Let u be a complex number which is not an integer, and let

7 cotan(7z)

fz) = (u+ 2)?

Show that f € M(C) and determine its poles and the corresponding residues.
(c) Let n be an integer such that |n| > |u|. Compute the integral

/Vf(z)dz

where 7, is the circle of radius n + 1/2 oriented counterclockwise.
(d) Deduce that

li = .
n s too k; (u+ k)2 (sinmu)?

Solution:

(a) Observe that sin(z) = 0 < z = km, for k € Z. Denote U = {z € C :
z # km} and observe that cotan(z) is holomorphic in U. For z = 7k we have
lim, Z?j((j)) +00. Also, given any compact K C C we have |[KU(C\U)| <

00, so we conclude that cotan is a meromorphic function in Ce.

The poles of the function are given by z = 7k for k € Z and we compute the
residues:

cos(z) (—1)F + (- 1)k+1(z il +0((z — k)"

sin(z)  (<1)k(z — 7k) + (- 1)k+1<2 ™ 4 O((z — 7k)5)
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(d)

thus,

cos(z)

zligrlk(z — k) sin(z) b

and we conclude that res.;(f) = 1.

Observe that 7 cotan(mz) and W are meromorphic functions in C so we

conclude that f is also meromorphic in C. The poles of the function are given
by {z =k, k € Z} U {—u} and

s mcotan(mz) 1
resy(f) —%érzc(z—wk:) it @ik

Observe that —u is a pole of order 2 if u # n + % with residue given by:

7T2

lim (7 cotan(7z)) = ——————.
i (o) =~ g

Ifu=n+ % then the pole is of order 1 and the residue is given by:

. mcotan(mz) 9 T
lim — = -7 = —————.
av—u U+ 2 sin®(mu)

ZF#—u

Observe that 7, doesn’t intersect with any of f poles. So, by the Residue’s
Theorem we conclude that

2

1 s
2. (u+ k)2 sin®(ru)

|k|<n

/yn F(2)dz = 2mi

To prove the result it is enough to show that

lim f(z)dz = 0.

Tn

First observe that cot(rz) is bounded for Im(z) > 1. It holds that

| cotan(mz)| =

21z 1 —2Im(z) 1
z(e‘ +1) <6 + <C
e2iz _ 1 — e—2Im(2)




If Im(z) < —1 then

< Ch.

| cotan(mz)| =

i(€2iz + 1) - 21m(z) 41
e2iz _ = e2Im(z) _ 1

We also observe that if z is of the form N + % +1it or —N — % +it, witht € R
we can also control cotan(mrz).

1 ) _6—27Tt + 1 ,
COtan(ﬂ'(N—f-E—f—Zt))‘:‘m <O
We can bound cotan(7z) in a vertical strip centered n + 1/2 uniformly in n,

and we know that for n big enough ~,(¢), for | Im(v,(¢))| < 1 is contained in
this strip. Thus,

which goes to zero as n — oo.

2. Let wy be a complex number such that |wg| < 1. Show that

defines a function with the following properties:

(a) It is a holomorphic function on D;(0) with values in D;(0);
(b) B(wp) =0 and B(0) = wy;

(@) [B() = 1if 2] = 1

(d) B is bijective.

Solution:

First observe that 1 —wpz =0 < z = wéo and since |wy| < 1 it holds that m > 1,
so B is holormophic in D;(0). We prove (c): if z = ¢ then

lwy — €% 1= woe ™|

|B(e")| = =1,

11— @oe®| |1 — e

thus B takes the boundary of the disc to itself. Thus, by the Maximum Modulus
Principle we conclude that B takes values in D;(0).

Observe that B is injective: if z; # 2z then
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Wo — 21 Wo — 22

— = — <~ 21 = 29.
1— Wop21 1— Wpz2

We can also show that B is surjective: let ¢ € D;(0) then

Wy — 2 Wy —
(Lmz L W

1 —wyz 11— (wo’

since |[¢| < 1 and we conclude that |z| < 1 and B is surjective.

3. Let U C C be an open set containing the unit disc D;(0). Let f € H(U), and
assume that f is not constant. Suppose further that |f(z)| = 1 if |z| = 1.

(a) Show that there exists z € D;(0) such that f(z) = 0.

(b) Show that for any w € D;(0), there exists z such that f(z) = w. (Hint: apply
the previous question to an auxiliary function constructed using Exercise 2.)

Solution:

(a) First we observe that from the Maximum Modulus Principle it holds that
|f(2)] <1 for z € Dy(0). We suppose that f has no zeros in D;(0). Since
|£(2)] = 1 for |2| = 1 we can take U open set satisfying f(z) # 0¥z € D;(0)
and D;(0) C U. We define G : U — C, G(z) = . Observe that |G(z)| =
1 whenever |z| = 1 so, by the Maximum Modulus Principle it holds that
|G(2)| <1 for z € D;(0), which is a contraction.

(b) Let U* be an open set such that f(z) # < and D;(0) C U* (which exists
since |f(z)| =1 for |z| = 1). Define the function

G:U"—C

sy W)

T w/()
From the previous exercise we can see that G maps D;(0) to D;(0) and that
|G(z)| = 1 for |z| = 1. We can then conclude using the previous item that

there exists zg such that G(zp) = 0 = f(2) = w, as we wanted to show.

4. Let r > 1 be a real number and let f and g be functions holomorphic in D,(0).
We assume that for |z| < 1, we have f(z) = 0 if and only if z = 0, and that
ordg(f) = 1. We also assume that g is not the zero function.

For € € C, we denote

fe(2) = f(2) +eg(2).



(a) Show that there exists a real number 6 > 0 such that we have |f(2)/g(z)| = ¢
if z satisfies |z] =1 and ¢(z) # 0.

(b) Show that if |e| < 4, the function f. is holomorphic on D,(0) and there is
a unique z. such that [2.] < 1 and f.(2.) = 0. We denote by Z the map
from Ds(0) to Dy(0) such that Z(e) = z..

(c) Prove that for || < §, we have |z.| < 1.

(d) Let (e,) be a sequence with |e,| < 6 which converges to € € Ds(0). If Z(e,)
converges to some complex number z, show that z = Z(¢). (Hint: use the
uniqueness of Z(¢).)

(e) Show that Z is continuous. (Hint: use the following fact from analysis: if a
bounded sequence (w,,) of complex numbers has the property that all conver-
gent subsequences (wy, ) have the same limit w, then (w,,) converges to w.)

Solution:

a) Let M = sup,_; |g(2)]. Observe that there exists K such that |f(z)| > K for
||
|z| = 1 since we know that f(z) #0 V |z| = 1. Thus, if |z| = 1 and g(z) # 0
we have
‘f(z)

g9(2)

K
> .
M

We let 6 := 4.
(b) Let |¢| < . For |z| =1 it holds that

[f(2) +eg(2) = f(2)] = leg(2)] < dlg(=)] < [f(2)];

so from Rouche’s Theorem we conclude that f and f. have the same number
of zeros in Dy(0). Since f has only one zero with multiplicity 1, we conclude
that there exists a unique zero z., f.(z.) = 0.

(c¢) This follows directly from Rouche’s theorem.

(d) Let e, — € and suppose that z., — z. Then, we know that

f(2e,) + €ng(ze,) =0,

and when we let n — oo we get

f(z) +(2) =0,

observe that || < ¢ and from uniqueness proved in item (b) we conclude that
z=Z(¢e).

(e) To prove that Z is continuous we take £, — ¢, |e,],|e] < 0. We know that
|Z(e,)] < 1. Let Z(e,,) be a convergent subsequence of Z(g,). From the
previous item we conclude that it has to converge to Z(e). Since this holds

for every convergent subsequence of Z(g,,), which is a bounded sequence, we
conclude that Z(e,) — Z(e).



