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Exercise worth bonus points: Exercise 1

1. For z ∈ C such that sin(z) 6= 0, we denote

cotan(z) =
cos(z)

sin(z)
= i

eiz + e−iz

eiz − e−iz
.

(a) Show that cotan ∈ M(C) and determine its poles and the corresponding
residues.

(b) Let u be a complex number which is not an integer, and let

f(z) =
π cotan(πz)

(u+ z)2
.

Show that f ∈M(C) and determine its poles and the corresponding residues.

(c) Let n be an integer such that |n| > |u|. Compute the integral∫
γ

f(z)dz

where γn is the circle of radius n+ 1/2 oriented counterclockwise.

(d) Deduce that

lim
n→+∞

n∑
k=−n

1

(u+ k)2
=

π2

(sinπu)2
.

Solution:

(a) Observe that sin(z) = 0 ⇔ z = kπ, for k ∈ Z. Denote U = {z ∈ C :
z 6= kπ} and observe that cotan(z) is holomorphic in U . For z = πk we have

limz→πk
cos(z)
sin(z)

= +∞. Also, given any compact K ⊂ C we have |K∪(CrU)| <
∞, so we conclude that cotan is a meromorphic function in Cc.

The poles of the function are given by z = πk for k ∈ Z and we compute the
residues:

cos(z)

sin(z)
=

(−1)k + (−1)k+1 (z−πk)2
2!

+O((z − πk)4)

(−1)k(z − πk) + (−1)k+1 (z−πk)3
3!

+O((z − πk)5)
,
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thus,

lim
z→πk

(z − πk)
cos(z)

sin(z)
= 1,

and we conclude that resπk(f) = 1.

(b) Observe that π cotan(πz) and 1
(u+z)2

are meromorphic functions in C so we
conclude that f is also meromorphic in C. The poles of the function are given
by {z = k, k ∈ Z} ∪ {−u} and

resk(f) = lim
z→k
z 6=k

(z − πk)
π cotan(πz)

(u+ z)2
=

1

(u+ k)2
.

Observe that −u is a pole of order 2 if u 6= n+ 1
2

with residue given by:

lim
z→−u
z 6=−u

(π cotan(πz))′ = − π2

sin2(πu)
.

If u = n+ 1
2

then the pole is of order 1 and the residue is given by:

lim
z→−u
z 6=−u

π cotan(πz)

u+ z
= −π2 = − π2

sin2(πu)
.

(c) Observe that γn doesn’t intersect with any of f poles. So, by the Residue’s
Theorem we conclude that∫

γn

f(z)dz = 2πi

∑
|k|<n

1

(u+ k)2
− π2

sin2(πu)


(d) To prove the result it is enough to show that

lim
n→∞

∫
γn

f(z)dz = 0.

First observe that cot(πz) is bounded for Im(z) > 1. It holds that

| cotan(πz)| =
∣∣∣∣i(e2iz + 1)

e2iz − 1

∣∣∣∣ 6 e−2 Im(z) + 1

1− e−2 Im(z)
6 C1
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If Im(z) < −1 then

| cotan(πz)| =
∣∣∣∣i(e2iz + 1)

e2iz − 1

∣∣∣∣ 6 e2 Im(z) + 1

e2 Im(z) − 1
6 C2.

We also observe that if z is of the form N + 1
2

+ it or −N − 1
2

+ it, with t ∈ R
we can also control cotan(πz).∣∣∣∣cotan

(
π

(
N +

1

2
+ it

))∣∣∣∣ =

∣∣∣∣−e−2πt + 1

−e−2πt − 1

∣∣∣∣ 6 C ′.

We can bound cotan(πz) in a vertical strip centered n+ 1/2 uniformly in n,
and we know that for n big enough γn(t), for | Im(γn(t))| < 1 is contained in
this strip. Thus,

∣∣∣∣∫
γn

f(z)dz

∣∣∣∣ 6 C̃
n+ 1

2

(n+ 1
2
− |u|)2

,

which goes to zero as n→∞.

2. Let w0 be a complex number such that |w0| < 1. Show that

B(z) =
w0 − z
1− w̄0z

defines a function with the following properties:

(a) It is a holomorphic function on D1(0) with values in D1(0);

(b) B(w0) = 0 and B(0) = w0;

(c) |B(z)| = 1 if |z| = 1;

(d) B is bijective.

Solution:

First observe that 1−w0z = 0⇔ z = 1
w0

and since |w0| < 1 it holds that 1
|w0| > 1,

so B is holormophic in D1(0). We prove (c): if z = eiθ then

|B(eiθ)| = |w0 − eiθ|
|1− w̄0eiθ|

=
|1− w0e

−iθ|
|1− w̄0eiθ|

= 1,

thus B takes the boundary of the disc to itself. Thus, by the Maximum Modulus
Principle we conclude that B takes values in D1(0).

Observe that B is injective: if z1 6= z2 then
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w0 − z1
1− w̄0z1

=
w0 − z2
1− w̄0z2

⇔ z1 = z2.

We can also show that B is surjective: let ζ ∈ D1(0) then

ζ =
w0 − z
1− w0z

⇔ z =
w0 − ζ
1− ζw0

,

since |ζ| < 1 and we conclude that |z| < 1 and B is surjective.

3. Let U ⊂ C be an open set containing the unit disc D̄1(0). Let f ∈ H(U), and
assume that f is not constant. Suppose further that |f(z)| = 1 if |z| = 1.

(a) Show that there exists z ∈ D1(0) such that f(z) = 0.

(b) Show that for any w ∈ D1(0), there exists z such that f(z) = w. (Hint: apply
the previous question to an auxiliary function constructed using Exercise 2.)

Solution:

(a) First we observe that from the Maximum Modulus Principle it holds that
|f(z)| 6 1 for z ∈ D1(0). We suppose that f has no zeros in D1(0). Since
|f(z)| = 1 for |z| = 1 we can take Ũ open set satisfying f(z) 6= 0∀z ∈ D1(0)
and D1(0) ⊂ Ũ . We define G : Ũ → C, G(z) = 1

f(z)
. Observe that |G(z)| =

1 whenever |z| = 1 so, by the Maximum Modulus Principle it holds that
|G(z)| 6 1 for z ∈ D1(0), which is a contraction.

(b) Let U? be an open set such that f(z) 6= 1
w

and D1(0) ⊂ U? (which exists
since |f(z)| = 1 for |z| = 1). Define the function

G : U? → C

z 7→ w − f(z)

1− wf(z)
.

From the previous exercise we can see that G maps D1(0) to D1(0) and that
|G(z)| = 1 for |z| = 1. We can then conclude using the previous item that
there exists z0 such that G(z0) = 0⇒ f(z) = w, as we wanted to show.

4. Let r > 1 be a real number and let f and g be functions holomorphic in Dr(0).
We assume that for |z| 6 1, we have f(z) = 0 if and only if z = 0, and that
ord0(f) = 1. We also assume that g is not the zero function.

For ε ∈ C, we denote
fε(z) = f(z) + εg(z).

4



(a) Show that there exists a real number δ > 0 such that we have |f(z)/g(z)| > δ
if z satisfies |z| = 1 and g(z) 6= 0.

(b) Show that if |ε| < δ, the function fε is holomorphic on Dr(0) and there is
a unique zε such that |zε| 6 1 and fε(zε) = 0. We denote by Z the map
from Dδ(0) to D̄1(0) such that Z(ε) = zε.

(c) Prove that for |ε| < δ, we have |zε| < 1.

(d) Let (εn) be a sequence with |εn| < δ which converges to ε ∈ Dδ(0). If Z(εn)
converges to some complex number z, show that z = Z(ε). (Hint: use the
uniqueness of Z(ε).)

(e) Show that Z is continuous. (Hint: use the following fact from analysis: if a
bounded sequence (wn) of complex numbers has the property that all conver-
gent subsequences (wnk

) have the same limit w, then (wn) converges to w.)

Solution:

(a) Let M = sup|z|=1 |g(z)|. Observe that there exists K such that |f(z)| > K for
|z| = 1 since we know that f(z) 6= 0 ∀ |z| = 1. Thus, if |z| = 1 and g(z) 6= 0
we have ∣∣∣∣f(z)

g(z)

∣∣∣∣ > K

M
.

We let δ := K
M

.

(b) Let |ε| < δ. For |z| = 1 it holds that

|f(z) + εg(z)− f(z)| = |εg(z)| < δ|g(z)| 6 |f(z)|,

so from Rouche’s Theorem we conclude that f and fε have the same number
of zeros in D1(0). Since f has only one zero with multiplicity 1, we conclude
that there exists a unique zero zε, fε(zε) = 0.

(c) This follows directly from Rouche’s theorem.

(d) Let εn → ε and suppose that zεn → z. Then, we know that

f(zεn) + εng(zεn) = 0,

and when we let n→∞ we get

f(z) + ε(z) = 0,

observe that |ε| < δ and from uniqueness proved in item (b) we conclude that
z = Z(ε).

(e) To prove that Z is continuous we take εn → ε, |εn|, |ε| < δ. We know that
|Z(εn)| < 1. Let Z(εnk

) be a convergent subsequence of Z(εn). From the
previous item we conclude that it has to converge to Z(ε). Since this holds
for every convergent subsequence of Z(εn), which is a bounded sequence, we
conclude that Z(εn)→ Z(ε).
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