Exercise sheet 9

Exercise worth bonus points: Exercise 2

1. For each of the functions

$$
f(z)=\exp \left(-\pi z^{2}\right), \quad f(z)=\frac{1}{z^{2}+1}
$$

show the following property: there exists $a>0$ (not necessarily the same in both cases) such that:
(a) The function f is holomorphic in the open set $U_{a} \subset \mathbf{C}$ defined by

$$
U_{a}=\{z \in \mathbf{C}| | \operatorname{Im}(z) \mid<a\} .
$$

(b) There exists a real number $C \geqslant 0$ such that

$$
|f(z)| \leqslant \frac{C}{1+x^{2}} \text { for } z=x+i y \text { with }|y|<a .
$$

2. We consider a real number $a>0$ and a function f which has the properties of Exercise 1 for this value of a. For $R>0$ and $h \in \mathbf{R}$, we define

$$
\hat{f}_{R}(h)=\int_{-R}^{R} f(x) e^{-2 i \pi h x} d x
$$

(a) Show that the limit

$$
\hat{f}(h)=\lim _{R \rightarrow+\infty} \hat{f}_{R}(h)=\int_{-\infty}^{+\infty} f(x) e^{-2 i \pi h x} d x
$$

exists.
(b) Let $b \in \mathbf{R}$ be such that $0<b<a$. Show that for any $h \in \mathbf{R}$ we have

$$
\lim _{R \rightarrow+\infty} \int_{\sigma_{R}} f(z) e^{-2 i \pi h z} d z=0, \quad \lim _{R \rightarrow+\infty} \int_{\sigma_{-R}} f(z) e^{-2 i \pi h z} d z=0
$$

where σ_{R} is the vertical segment from R to $R-i b$.
(c) Let γ_{R} be the line segment from $R-i b$ to $-R-i b$, oriented from right to left. Show that

$$
\hat{f}(h)=\lim _{R \rightarrow+\infty} \int_{\gamma_{R}} f(z) e^{-2 i \pi h z} d z
$$

(d) Show that there exists $D \geqslant 0$ such that

$$
\left|\int_{\gamma_{R}} f(z) e^{-2 i \pi h z} d z\right| \leqslant D e^{-2 \pi b h}
$$

for all $h \in \mathbf{R}$, and then that $|\hat{f}(z)| \leqslant D e^{-2 \pi b h}$.
(e) Show similarly that

$$
\hat{f}(h)=\lim _{R \rightarrow+\infty} \int_{\gamma_{R}^{\prime}} f(z) e^{-2 i \pi h z} d z
$$

where γ_{R}^{\prime} is the segment from $R+i b$ to $-R+i b$ oriented from right to left.
3. We continue with some $a>0$ and a function f as in the previous exercise. Fix b such that $0<b<a$. Define

$$
g(z)=\frac{1}{e^{2 i \pi z}-1} .
$$

(a) Show that $g \in \mathcal{M}(\mathbf{C})$ and has simple poles with residue $1 /(2 i \pi)$ at all $z \in \mathbf{Z}$, and no other pole.
(b) For $N \geqslant 1$, show that

$$
\sum_{-N \leqslant n \leqslant N} f(n)=\int_{\Gamma_{N}} \frac{f(z)}{e^{2 i \pi z}-1} d z
$$

where Γ_{N} is the boundary of the rectangle $[-N-1 / 2, N+1 / 2] \times[-b, b]$ oriented counterclockwise.
(c) Let Γ_{N}^{+}be the segment from $N+1 / 2+i b$ to $-N-1 / 2+i b$ of Γ_{N}. Show that

$$
\int_{\Gamma_{N}^{+}} \frac{f(z)}{e^{2 i \pi z}-1} d z=\sum_{k=0}^{+\infty} \int_{\Gamma_{N}^{+}} f(z) e^{-2 i \pi(k+1) z} d z
$$

(d) Deduce that

$$
\lim _{N \rightarrow+\infty} \int_{\gamma_{N}^{+}} \frac{f(z)}{e^{2 i \pi z}-1} d z=\sum_{k=0}^{+\infty} \hat{f}(k+1)
$$

where \hat{f} is defined as in the previous exercise. (Hint: observe that the previous exercise implies that the series on the right-hand side converges absolutely so that the sum and the limit can be exchanged).
(e) Show similarly that

$$
\lim _{N \rightarrow+\infty} \int_{\gamma_{\bar{N}}} \frac{f(z)}{e^{2 i \pi z}-1} d z=\sum_{k=0}^{+\infty} \hat{f}(-k),
$$

where Γ_{N}^{-}is the segment from $N+1 / 2-i b$ to $-N-1 / 2-i b$.
(f) Conclude that

$$
\sum_{n \in \mathbf{Z}} f(n)=\sum_{h \in \mathbf{Z}} \hat{f}(h)
$$

("Poisson summation formula"); here both series are defined as the limit as $N \rightarrow+\infty$ of the sums from $-N$ to N.

