Mock Exam

Exercise 1: multiple choice questions. There is exactly one correct answer for each question; correctly answered questions give one point, wrong answers or no answers give zero points (no negative points).

We always write z = x + iy where x and y are the real and imaginary parts of z respectively.

- a) Which of these functions $u: \mathbf{C} \to \mathbf{R}$ cannot be the real part of a holomorphic function $f: \mathbf{C} \to \mathbf{C}$:
 - I. $u(z) = x^2 + y^2$. II. $u(z) = x^2 - y^2$. III. $u(z) = e^x \cos(y)$. IV. $u(z) = \cos(x)(e^y + e^{-y})$.
- b) Which function is holomorphic on **C**:
 - I. f(z) = 1/zII. $f(z) = \operatorname{Re}(z)$ III. $f(z) = \exp(z^3)$ IV. $f(z) = \exp(\overline{z})$
- c) Which of the following properties is *not* true for a holomorphic function $f: D_1(0) \to \mathbb{C}$:
 - I. $f(0) = \frac{1}{2\pi i} \int_{C_{1/2}(0)} \frac{f(w)}{w} dw$, where the circle is oriented counterclockwise.
 - II. f admits a power series expansion

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n$$

valid for |z| < 1/2.

- III. f is bounded.
- IV. $\int_{C_{1/2}(0)} f(z)dz = 0$, where the circle is oriented counterclockwise.

Bitte wenden.

d) What is the value of

$$\int_{\gamma} \frac{e^z}{z^2 - 1/4} dz$$

where γ is the boundary of the rectangle $[0,1] \times [-1,1]$ taken counterclockwise:

- I. 0.
- II. $2ie\pi$.
- III. $2i\pi e^{1/2}$.
- IV. $e^{1/2}$.
- e) What is the value of

$$\int_{\gamma} \frac{e^z}{z^2 - 1/4} dz$$

where γ is the boundary of the rectangle $[-1/4, 0] \times [-1, 1]$ taken counterclockwise:

- I. 0.
- II. $2ie\pi$. III. $2i\pi e^{1/2}$.
- IV. $e^{1/2}$.
- f) What is the residue of the function

$$f(z) = \frac{\cos(z)}{\sin(z)}$$

- at $z = 2\pi$:
 - I. 0. II. 1.
- III. -1.
- IV. π .
- g) What is the value of

$$\frac{1}{2i\pi}\int_{\gamma}\frac{w^3-w+1}{(w-i)^2}dw,$$

where γ is the circle centered at 2i with radius 2 taken counterclockwise:

I. -2. II. 2π . III. -4. IV. 4.

- h) Which of the following properties is true for all holomorphic functions $f: \mathbf{C} \to \mathbf{C}$:
 - I. f is bounded.
 - II. there exists some integer $k \in \mathbb{Z}$ such that $f(k) \neq 0$.
 - III. the power series expansion of f around 2i has finite radius of convergence.
 - IV. if f(z) = z for |z| = 1 then f(z) = z for all $z \in \mathbf{C}$.

In the following exercises, please justify all steps.

Exercise 2. Find the power series expansions:

1. around 1 of the function

$$f(z) = \frac{1}{(1+z)^2}.$$

2. around 0 of the function

$$f(z) = e^{z^2}.$$

Exercise 3. Let $U = \{z \in \mathbb{C} \mid \operatorname{Re}(z) > 0\}$. Show that the integral

$$f(z) = \int_0^1 x^z (1-x)^z dx$$

exists for all $z \in U$ and that the function f defined in this way is holomorphic on U.

Exercise 4. Let U be the open set of all $z \in \mathbb{C}$ such that $e^z + 1 \neq 0$.

- a) Determine the complement F of U in \mathbb{C} .
- b) Let a be a complex number. Show that $f(z) = e^{az}/(1+e^z)$ is holomorphic on U.
- c) For $z \in F$, show that f has a pole at z and compute its residue.
- d) Let $R \ge 4$ be a real number and let γ_R be the boundary of the rectangle $[-R, R] \times [0, 2i\pi]$, taken counterclockwise. Show that

$$\int_{\gamma_R} f(z)dz = -2i\pi e^{i\pi a}.$$

What would happen if we took R = 2?

Bitte wenden.

e) Let σ_1 be the vertical segment on the right of γ_R (which can be parameterized by $\sigma_1(t) = R + it$ for $0 \leq i \leq 2\pi$) and σ_2 be the vertical segment on the left. Show that if a is a real number with 0 < a < 1, then

$$\lim_{R \to +\infty} \int_{\sigma_1} f(z) dz = \lim_{R \to +\infty} \int_{\sigma_2} f(z) dz = 0.$$

f) Show that the improper Riemann integral

$$\int_{-\infty}^{+\infty} \frac{e^{ax}}{1+e^x} dx$$

exists and is absolutely convergent for 0 < a < 1 and that it is equal to

$$\frac{\pi}{\sin(\pi a)}.$$

g) What happens if we only assume that 0 < Re(a) < 1?