Mock Exam

Exercise 1: multiple choice questions. There is exactly one correct answer for each question; correctly answered questions give one point, wrong answers or no answers give zero points (no negative points).

We always write $z=x+i y$ where x and y are the real and imaginary parts of z respectively.
a) Which of these functions $u: \mathbf{C} \rightarrow \mathbf{R}$ cannot be the real part of a holomorphic function f : $\mathbf{C} \rightarrow \mathbf{C}$:
I. $u(z)=x^{2}+y^{2}$.
II. $u(z)=x^{2}-y^{2}$.
III. $u(z)=e^{x} \cos (y)$.
IV. $u(z)=\cos (x)\left(e^{y}+e^{-y}\right)$.
b) Which function is holomorphic on \mathbf{C} :
I. $f(z)=1 / z$
II. $f(z)=\operatorname{Re}(z)$
III. $f(z)=\exp \left(z^{3}\right)$
IV. $f(z)=\exp (\bar{z})$
c) Which of the following properties is not true for a holomorphic function $f: D_{1}(0) \rightarrow$ C:
I. $f(0)=\frac{1}{2 \pi i} \int_{C_{1 / 2}(0)} \frac{f(w)}{w} d w$, where the circle is oriented counterclockwise.
II. f admits a power series expansion

$$
f(z)=\sum_{n=0}^{+\infty} a_{n} z^{n}
$$

valid for $|z|<1 / 2$.
III. f is bounded.
IV. $\int_{C_{1 / 2}(0)} f(z) d z=0$, where the circle is oriented counterclockwise.
d) What is the value of

$$
\int_{\gamma} \frac{e^{z}}{z^{2}-1 / 4} d z
$$

where γ is the boundary of the rectangle $[0,1] \times[-1,1]$ taken counterclockwise:
I. 0 .
II. $2 i e \pi$.
III. $2 i \pi e^{1 / 2}$.
IV. $e^{1 / 2}$.
e) What is the value of

$$
\int_{\gamma} \frac{e^{z}}{z^{2}-1 / 4} d z
$$

where γ is the boundary of the rectangle $[-1 / 4,0] \times[-1,1]$ taken counterclockwise:
I. 0 .
II. $2 i e \pi$.
III. $2 i \pi e^{1 / 2}$.
IV. $e^{1 / 2}$.
f) What is the residue of the function

$$
f(z)=\frac{\cos (z)}{\sin (z)}
$$

at $z=2 \pi$:
I. 0 .
II. 1.
III. -1 .
IV. π.
g) What is the value of

$$
\frac{1}{2 i \pi} \int_{\gamma} \frac{w^{3}-w+1}{(w-i)^{2}} d w
$$

where γ is the circle centered at $2 i$ with radius 2 taken counterclockwise:
I. -2 .
II. 2π.
III. -4 .
IV. 4.
h) Which of the following properties is true for all holomorphic functions $f: \mathbf{C} \rightarrow \mathbf{C}$:
I. f is bounded.
II. there exists some integer $k \in \mathbf{Z}$ such that $f(k) \neq 0$.
III. the power series expansion of f around $2 i$ has finite radius of convergence.
IV. if $f(z)=z$ for $|z|=1$ then $f(z)=z$ for all $z \in \mathbf{C}$.

In the following exercises, please justify all steps.

Exercise 2. Find the power series expansions:

1. around 1 of the function

$$
f(z)=\frac{1}{(1+z)^{2}}
$$

2. around 0 of the function

$$
f(z)=e^{z^{2}}
$$

Exercise 3. Let $U=\{z \in \mathbf{C} \mid \operatorname{Re}(z)>0\}$. Show that the integral

$$
f(z)=\int_{0}^{1} x^{z}(1-x)^{z} d x
$$

exists for all $z \in U$ and that the function f defined in this way is holomorphic on U.
Exercise 4. Let U be the open set of all $z \in \mathbf{C}$ such that $e^{z}+1 \neq 0$.
a) Determine the complement F of U in \mathbf{C}.
b) Let a be a complex number. Show that $f(z)=e^{a z} /\left(1+e^{z}\right)$ is holomorphic on U.
c) For $z \in F$, show that f has a pole at z and compute its residue.
d) Let $R \geqslant 4$ be a real number and let γ_{R} be the boundary of the rectangle $[-R, R] \times$ [$0,2 i \pi]$, taken counterclockwise. Show that

$$
\int_{\gamma_{R}} f(z) d z=-2 i \pi e^{i \pi a}
$$

What would happen if we took $R=2$?
e) Let σ_{1} be the vertical segment on the right of γ_{R} (which can be parameterized by $\sigma_{1}(t)=R+i t$ for $\left.0 \leqslant i \leqslant 2 \pi\right)$ and σ_{2} be the vertical segment on the left. Show that if a is a real number with $0<a<1$, then

$$
\lim _{R \rightarrow+\infty} \int_{\sigma_{1}} f(z) d z=\lim _{R \rightarrow+\infty} \int_{\sigma_{2}} f(z) d z=0
$$

f) Show that the improper Riemann integral

$$
\int_{-\infty}^{+\infty} \frac{e^{a x}}{1+e^{x}} d x
$$

exists and is absolutely convergent for $0<a<1$ and that it is equal to

$$
\frac{\pi}{\sin (\pi a)}
$$

g) What happens if we only assume that $0<\operatorname{Re}(a)<1$?

