Mock Exam

Exercise 1: multiple choice questions. There is exactly one correct answer for each question; correctly answered questions give one point, wrong answers or no answers give zero points (no negative points).

We always write $z=x+i y$ where x and y are the real and imaginary parts of z respectively.
a) Which of these functions $u: \mathbf{C} \rightarrow \mathbf{R}$ cannot be the real part of a holomorphic function f : $\mathbf{C} \rightarrow \mathbf{C}$:
I. $u(z)=x^{2}+y^{2}$.
II. $u(z)=x^{2}-y^{2}$.
III. $u(z)=e^{x} \cos (y)$.
IV. $u(z)=\cos (x)\left(e^{y}+e^{-y}\right)$.

Observe that if u is the real part of a holomorphic function then u has to be harmonic. But $\Delta(u)=2+2=4 \neq 0$.
b) Which function is holomorphic on \mathbf{C} :
I. $f(z)=1 / z$
II. $f(z)=\operatorname{Re}(z)$
III. $f(z)=\exp \left(z^{3}\right)$
IV. $f(z)=\exp (\bar{z})$
c) Which of the following properties is not true for a holomorphic function $f: D_{1}(0) \rightarrow$ C:
I. $f(0)=\frac{1}{2 \pi i} \int_{C_{1 / 2}(0)} \frac{f(w)}{w} d w$, where the circle is oriented counterclockwise.
II. f admits a power series expansion

$$
f(z)=\sum_{n=0}^{+\infty} a_{n} z^{n}
$$

valid for $|z|<1 / 2$.
III. f is bounded.
IV. $\int_{C_{1 / 2}(0)} f(z) d z=0$, where the circle is oriented counterclockwise.

Consider $f(z)=\frac{1}{z-1}$.
d) What is the value of

$$
\int_{\gamma} \frac{e^{z}}{z^{2}-1 / 4} d z
$$

where γ is the boundary of the rectangle $[0,1] \times[-1,1]$ taken counterclockwise:
I. 0 .
II. $2 i e \pi$.
III. $2 i \pi e^{1 / 2}$.
IV. $e^{1 / 2}$.

Cauchy's integral formula at $z=1 / 2$ and $f(z)=\frac{e^{z}}{z+\frac{1}{2}}$.
e) What is the value of

$$
\int_{\gamma} \frac{e^{z}}{z^{2}-1 / 4} d z
$$

where γ is the boundary of the rectangle $[-1 / 4,0] \times[-1,1]$ taken counterclockwise:
I. 0 .
II. $2 i e \pi$.
III. $2 i \pi e^{1 / 2}$.
IV. $e^{1 / 2}$.

Cauchy's Theorem.
f) What is the residue of the function

$$
f(z)=\frac{\cos (z)}{\sin (z)}
$$

at $z=2 \pi$:
I. 0 .
II. 1.
III. -1 .
IV. π.

Expand in Taylor series to note that $z=2 \pi$ is a pole of order 1 .
g) What is the value of

$$
\frac{1}{2 i \pi} \int_{\gamma} \frac{w^{3}-w+1}{(w-i)^{2}} d w,
$$

where γ is the circle centered at $2 i$ with radius 2 taken counterclockwise:
I. -2 .
II. 2π.
III. -4 .
IV. 4.

Cauchy's integral formula for $f(z)=z^{3}-z+1$ at $z=1$.
h) Which of the following properties is true for all holomorphic functions $f: \mathbf{C} \rightarrow \mathbf{C}$:
I. f is bounded.
II. there exists some integer $k \in \mathbf{Z}$ such that $f(k) \neq 0$.
III. the power series expansion of f around $2 i$ has finite radius of convergence.
IV. if $f(z)=z$ for $|z|=1$ then $f(z)=z$ for all $z \in \mathbf{C}$.

In the following exercises, please justify all steps.

Exercise 2. Find the power series expansions:

1. around 1 of the function

$$
f(z)=\frac{1}{(1+z)^{2}} .
$$

2. around 0 of the function

$$
f(z)=e^{z^{2}} .
$$

Solution:
1.

$$
f(z)=\frac{1}{4} \sum_{n=1}^{\infty}(-1)^{n} n \frac{(z-1)^{n-1}}{2^{n-1}} .
$$

2.

$$
f(z)=\sum_{n=1}^{\infty} \frac{z^{2 n}}{n!} .
$$

Exercise 3. Let $U=\{z \in \mathbf{C} \mid \operatorname{Re}(z)>0\}$. Show that the integral

$$
f(z)=\int_{0}^{1} x^{z}(1-x)^{z} d x
$$

exists for all $z \in U$ and that the function f defined in this way is holomorphic on U.
Solution: Let $F: U \times[0,1] \rightarrow \mathbf{C}, F(z, x)=x^{z}(1-x)^{z}=e^{z(\log (x)+\log (1-x))}$ for $(z, x) \in U \times(0,1)$ and $F(z, 0)=F(z, 1)=0$. We can see that F is is well defined and it is continuous for $(z, x) \in U \times(0,1)$. We check continuity for $U \times\{0,1\}$:

Let $z \in U$ and $x_{n} \rightarrow 0^{+}$. Observe that $\log \left(x_{n}\right) \rightarrow-\infty$ and since $\operatorname{Re}(z)>0$ we get

$$
\lim _{n \rightarrow \infty}\left|e^{z \log \left(x_{n}\right)}\right|=\lim _{n \rightarrow \infty} e^{\operatorname{Re} z \cdot \log \left(x_{n}\right)}=0
$$

We prove that F is continuous in $U \times\{1\}$ analogously.
We observe that for any fixed $x \in[0,1], F(z, x)$ is holomorphic in U, so by Theorem 5.4 we can conclude that f defines a holomorphic function in U.

Exercise 4. Let U be the open set of all $z \in \mathbf{C}$ such that $e^{z}+1 \neq 0$.
a) Determine the complement F of U in \mathbf{C}.
b) Let a be a complex number. Show that $f(z)=e^{a z} /\left(1+e^{z}\right)$ is holomorphic on U.
c) For $z \in F$, show that f has a pole at z and compute its residue.
d) Let $R \geqslant 4$ be a real number and let γ_{R} be the boundary of the rectangle $[-R, R] \times$ $[0,2 \pi]$, taken counterclockwise. Show that

$$
\int_{\gamma_{R}} f(z) d z=-2 i \pi e^{i \pi a}
$$

What would happen if we took $R=2$?
e) Let σ_{1} be the vertical segment on the right of γ_{R} (which can be parameterized by $\sigma_{1}(t)=R+i t$ for $\left.0 \leqslant t \leqslant 2 \pi\right)$ and σ_{2} be the vertical segment on the left. Show that if a is a real number with $0<a<1$, then

$$
\lim _{R \rightarrow+\infty} \int_{\sigma_{1}} f(z) d z=\lim _{R \rightarrow+\infty} \int_{\sigma_{2}} f(z) d z=0
$$

f) Show that the improper Riemann integral

$$
\int_{-\infty}^{+\infty} \frac{e^{a x}}{1+e^{x}} d x
$$

exists and is absolutely convergent for $0<a<1$ and that it is equal to

$$
\frac{\pi}{\sin (\pi a)}
$$

g) What happens if we only assume that $0<\operatorname{Re}(a)<1$?

Solution:

a) Observe that $F=\left\{z \in \mathbf{C}: e^{z}=-1\right\}$ and $e^{z}=-1=e^{\pi i} \Leftrightarrow z=\pi i+2 \pi i k$ for $k \in$ Z, so

$$
F=\{\pi i(2 k+1), \text { for } k \in \mathbf{Z}\} .
$$

b) Observe that for $a \in \mathbf{C} e^{a z}$ is holomorphic in \mathbf{C} and, since we $e^{z}+1$ is holormophic in U and never zero we conclude that f is holormorphic in U.
c) Let $z_{k}=\pi i(2 k+1)$. We write

$$
\frac{e^{a z}}{1+e^{z}}=\frac{e^{a z}}{-\sum_{n=1}^{\infty} \frac{\left(z-z_{k}\right)^{n}}{n!}}=\frac{e^{a z}}{-\left(z-z_{k}\right)\left(1+\sum_{n=2}^{\infty} \frac{\left(z-z_{k}\right)^{n-1}}{n!}\right)}
$$

and observe that z_{k} is a pole of order 1 and

$$
\operatorname{res}_{z_{k}}(f)=\lim _{z \rightarrow z_{k}}\left(z-z_{k}\right) \frac{e^{a z}}{-\left(z-z_{k}\right)\left(1+\sum_{n=2}^{\infty} \frac{\left(z-z_{k} k^{n-1}\right.}{n!}\right)}=-e^{a z_{k}}
$$

d) Let $R \geqslant 4$ and observe that the only singularity that lies inside the rectangle $[-R, R] \times[0,2 \pi]$ is $z=\pi i$, so by the Residue Theorem we have

$$
\int_{\gamma_{R}} f(z) d z=2 \pi i \operatorname{res}_{\pi i}(f)=-2 i \pi e^{i \pi a} .
$$

When $R=2$ the same result holds.
e) Observe that

$$
\left|\int_{0}^{2 \pi} \frac{e^{a(R+i x)}}{1+e^{R+i x}} d x\right| \leqslant 2 \pi \frac{e^{a R}}{e^{R}-1},
$$

and since $0<a<1$, we get

$$
\lim _{R \rightarrow+\infty} \int_{\sigma_{1}} f(z) d z=0
$$

The same analysis holds for σ_{2}.
f) Using the results above we can write

$$
\int_{-R}^{R} \frac{e^{a x}}{1+e^{x}} d x=\frac{1}{1-e^{2 \pi i a}}\left(-2 \pi i e^{a \pi i}+\int_{\sigma_{1}} f(z) d z+\int_{\sigma_{2}} f(z) d z\right)
$$

so letting $R \rightarrow+\infty$ we get

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{e^{a x}}{1+e^{x}} d x=-\frac{1}{1-e^{2 \pi i a}} 2 \pi i e^{a \pi i}=\pi\left(\frac{-2 i}{e^{-\pi i a}-e^{\pi i a}}\right)=\frac{\pi}{\sin (\pi a)}
$$

g) When $0<\operatorname{Re}(z)<1$ we observe that the result in e) still holds so we can conclude the same result in f) in this case.

