## Solutions AT-I Winter 16

1. (a) Let $i: A \hookrightarrow X$ be the inclusion and $r: X \rightarrow A$ the retraction. Since $r \circ i=i d_{A}$ the induced maps on homology satisfy $r_{*} \circ i_{*}=\left(i d_{A}\right)_{*}$ and therefore $i_{*}$ must be injective.
(b) Since $i_{*}$ is injective, the long exact sequence of the pair $(X, A)$ splits up into short exact sequences of the form:

$$
0 \rightarrow H_{j}(A) \xrightarrow{i_{*}} H_{j}(X) \rightarrow H_{j}(X, A) \rightarrow 0 .
$$

The induced map $r_{*}$ is a left inverse of $i_{*}$ and therefore, by the "splitting Lemma", we know that this short exact sequence splits and hence we have $H_{j}(A) \oplus H_{j}(X, A) \cong H_{j}(X)$.
(c) No. For any map $g: X \rightarrow Y$, the mapping cylinder always deformation retracts onto $Y$ (see exercise sheet 1), i.e. $M_{g} \simeq Y$. Hence, $M_{f}$ deformation retracts onto the $S^{1}$ corresponding to the image of $f$. Since the degree of $f$ is 2 we have:


Assuming that there is a retraction as in the question, by parts a) and b), we get a split short exact sequence

$$
0 \rightarrow H_{1}\left(S^{1}\right) \rightarrow H_{1}\left(M_{f}\right) \rightarrow H_{1}\left(M_{f}, S^{1}\right) \rightarrow 0
$$

and hence

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \rightarrow \mathbb{Z}_{2} \rightarrow 0
$$

But $\mathbb{Z} \oplus \mathbb{Z}_{2} \not \not \mathbb{Z}$ and hence the sequence does not split. This is a contradiction to part b) and therefore there is no retract from $M_{f}$ to the $S^{1} \subset M_{f}$ corresponding to the domain of $f$.
2. (a) Suppose $\exists x \in S^{n}$ which is not covered by $c=\sum_{j} n_{j} \sigma_{j}$. That is $x \notin \bigcup_{j} \operatorname{image}\left(\sigma_{j}\right)$, where $\sigma_{j}: \Delta^{n} \rightarrow S^{n}$. Then each $\sigma_{j}$ can be factored as


Let $c^{\prime}:=\sum_{j} n_{j} \sigma_{j}^{\prime} \in S_{n}\left(S^{n} \backslash\{x\}\right)$, as $c$ is a cycle, $c^{\prime}$ is a cycle as well and $\left[c^{\prime}\right] \in H_{n}\left(S^{n} \backslash\{x\}\right) \cong H_{n}(\mathbb{R})=0$. Hence $\left[c^{\prime}\right]=0$ and therefore we get that $[c]=i_{*}\left[c^{\prime}\right]=0$ and the claim is established.
(b) - $\underline{n=1}$ : As $\left.\operatorname{deg} f\right|_{S^{n-1}} \neq 0$, the map $\left.f\right|_{S^{n-1}}: S^{0} \rightarrow S^{0}$ is surjective. The image $f\left(D^{1}\right)$ is connected and hence $f$ is surjective.

- $n \geq 2$ : Assume that $f$ is not surjective, then there is a point $p \in \operatorname{int}\left(D^{n}\right) \backslash$ image $(f)$. We get the following commutative diagram with exact rows:


We have that $H_{n}\left(D^{n}\right)=H_{n-1}\left(D^{n}\right)=0, H_{n}\left(D^{n} \backslash\{p\}\right) \cong H_{n}\left(S^{n-1}\right)=0$ and $H_{n}\left(D^{n} \backslash\{p\}, S^{n-1}\right) \cong H_{n}\left(S^{n-1}, S^{n-1}\right)=0$ and hence we obtain:


By commutativity of the diagram, the isomorphism in the top row composed with $f_{*}$ must be zero. But $f_{*}: H_{n-1}\left(S^{n-1}\right) \rightarrow H_{n-1}\left(S^{n-1}\right)$ is just multiplication by $\left.\operatorname{deg} f\right|_{S^{n-1}}$. So we get a contradiction to the assumption that $\left.\operatorname{deg} f\right|_{S^{n-1}} \neq 0$.
3. (a) - Take any point on the equator of $\partial B^{3}=S^{2}$ as the unique 0-cell $x$.

- $x$ and the points equivalent to it divide the equator into $p$ segments; choose any one of them as the unique 1-cell $a$.
- Any point on the upper hemisphere of $\partial B^{3}=S^{2}$ gets identified with exactly one other point. Take the upper hemisphere as the unique 2-cell $b$.
- Take $B^{3}$ as the unique 3 -cell $c$. The attaching map is given by the quotient map.
(b) - We clearly have $\mathrm{d}(x)=0$.
- Since there is only one 0 -cell we have $d(a)=x-x=0$.
- $d(b)= \pm p \cdot a$. (The rotation by $2 \pi / p$ of the equator is orientation preserving).
- $d(c)= \pm(b-b)=0$ since the reflection along the equator of $S^{2}$ is orientation reversing.

Therefore the cellular homology of $L_{p}$ is given by:

$$
H_{n}\left(L_{p}\right) \cong\left\{\begin{array}{lc}
\mathbb{Z}, & n=3 \\
0, & n=2 \\
\mathbb{Z}_{p}, & n=1 \\
\mathbb{Z}, & n=0
\end{array}\right.
$$

4. (a) Let $\pi: S^{2 k} \rightarrow \mathbb{R} P^{2 k}$ be the usual 2:1-covering. Since $S^{2 k}$ is simply connected (as $k>1$ ) the map $\pi \circ f: S^{2 k} \rightarrow \mathbb{R} P^{2 k}$ can be lifted to a map $\tilde{f}: S^{2 k} \rightarrow S^{2 k}$.


By a Corollary of the lecture there exists $x \in S^{2 k}$ such that $\tilde{f}(x)= \pm x$. Since $\pi(x)=\pi(-x)$ we get $f \circ \pi(x)=\pi \tilde{f}(x)=\pi x$ and therefore $\pi(x)$ is a fixed point of $f$.
(b) Fix any point $p \in S^{k} \subset \mathbb{R}^{n+1}$. If $k=0$, the constant map with image $p$ has degree 0 and the fixed point $p$.
If $k \geq 1$, choose $k$ disjoint closed balls $B_{j} \subset S^{n}$ which don't contain $p$. Define the map $g_{k}: S^{n} \rightarrow S^{n}$ as follows: $g_{k}$ maps the interior of each of the balls $B_{j}$ homeomorphically onto $S^{n} \backslash\{p\}$ and the boundary of $\partial B_{j}$ to $p \in S^{n}$. The complement $S^{n} \backslash \bigcup B_{j}$ is mapped to $p$ by $g_{k}$. Then $g_{k}$ has degree $k$ and $g_{k}(p)=p$. If $k<0$, compose the previous map with a reflection along a hypersurface in $\mathbb{R}^{n+1}$ that contains $p$.
5. (a) No. Consider for example the quotient map $p: S^{n} \rightarrow \mathbb{R} P^{n}$ where $n \geq 2$. Any singular simplex of $\mathbb{R} P^{n}$ can be lifted to a singular simplex of $S^{n}$ and therefore the induced map on the singular chains $\pi_{*}: S_{\bullet}\left(S^{n}\right) \rightarrow S_{\bullet}\left(\mathbb{R} P^{n}\right)$ is surjective. However, the induced map on the homology level cannot be surjective because $H_{k}\left(S^{n}\right)=0$ and $H_{k}\left(\mathbb{R} P^{n}\right)=\mathbb{Z}_{2}$ for any odd $k$ with $1 \leq k<n$.
(b) No. Consider for example an embedding of $S^{1}$ into the disk $D^{2}$. Since it is an embedding, the induced map on the singular chains is injective. However, the induced map on the homology level is not injective since $H_{1}\left(S^{1}\right) \cong \mathbb{Z}$ and $H_{1}\left(D^{2}\right)=0$.
(c) Yes. Let $\psi=\varphi^{-1}: D_{\bullet} \rightarrow C_{\bullet}$. Then $\psi$ is a chain map

$$
\partial \psi=\psi \circ \varphi \circ \partial \psi=\psi \circ \partial \varphi \circ \psi=\psi \partial
$$

On the homology level we have $\psi_{*} \varphi_{*}=(\psi \varphi)_{*}=\left(i d_{C}\right)_{*}=i d_{H(C)}$ and $\varphi_{*} \psi_{*}=$ $(\varphi \psi)_{*}=\left(i d_{D}\right)_{*}=i d_{H(D)}$. Therefore $\varphi_{*}$ is an isomorphism on homology with inverse $\psi_{*}$.
6. (a) The differential on the cellular chain complex is given by: $d \sigma=\sum_{\tau}[\tau: \sigma] \tau$, where $\tau$ ranges of all $k$-cells of $X$. Since $d^{2}=0$ we get:

$$
d^{2} \sigma=\sum_{\tau}[\tau: \sigma] d \tau=\sum_{\tau, \kappa}[\tau: \sigma][\kappa: \tau] \kappa=0,
$$

where $\kappa$ ranges over all $(k-1)$-cells of $X$. If $\omega$ is any $(k-1)$-cell of $X$, the coefficient of $d^{2} \sigma$ in front of $\omega$ must vanish and this coefficient is precisely given by $\sum_{\tau}[\tau: \sigma][\omega: \tau]$. This proves the claim.
(b) The cellular map $g$ induces a chain map $g_{C W}$ from the cellular chain complex of $X$ to the cellular chain complex of $Y$, i.e. $d \circ g_{C W}=g_{C W} \circ d$. We have

$$
\begin{align*}
& g_{C W}(d \eta)=\sum_{\lambda}[\lambda: \eta] g_{C W}(\lambda)=\sum_{\xi, \lambda}[\lambda: \eta] \operatorname{deg}\left(g_{\xi, \lambda}\right) \xi  \tag{1}\\
& d \circ g_{C W}(\eta)=\sum_{\alpha} \operatorname{deg}\left(g_{\alpha, \eta}\right) d \alpha=\sum_{\alpha, \xi} \operatorname{deg}\left(g_{\alpha, \eta}\right)[\xi: \alpha] \xi \tag{2}
\end{align*}
$$

where $\lambda$ ranges over all $(k-1)$-cells of $X, \alpha$ ranges over all $k$-cells of $Y$ and $\xi$ ranges over all $(k-1)$-cells of $Y$. Since $(1)=(2)$, the coefficients in front of the ( $k-1$ )-cell $\beta$ of $Y$ in both equations must be equal. Therefore we get:

$$
\sum_{\lambda}[\lambda: \eta] \operatorname{deg}\left(g_{\beta, \lambda}\right)=\sum_{\alpha} \operatorname{deg}\left(g_{\alpha, \eta}\right)[\beta: \alpha] .
$$

