Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Prof. Paul Biran

Exam in Algebraic Topology I - Winter 2019

Name:

First Name:
Legi-Nr.

Please leave the following spaces blank!

	1. Corr.	2. Corr.	Points	Remarks
Problem 1				
Problem 2				
Problem 3				
Problem 4				
Problem 5				
Problem 6				
Total				
Grade				
Complete?			\square	

Please read carefully!

- The exam is divided into two parts, Part A and Part B. Part A consists of four problems (1-4) and part B of two problems (5-6). Each problem is divided into sub-problems.
- For Part A: Please choose and solve three out of the four problems of Part A. Only three problems will be graded. Each problem in part A gives 16 points. You will not get additional points if you solve more than three problems.
- For Part B: Please choose and solve only one out of the two problems of Part B. Only one problem will be graded. Each problem in part B gives 12 points. You will not get additional points if you solve more than one problem.
- In case you hand in too many problems and/or do not clearly indicate which problems you wish to be graded we will only grade the problems that occur first in your work.
- All answers/statements/counter-examples in your work should be proved. (It is okay to use theorems/statements proved in class without reproving them.)
- The maximal score of the exam is $\mathbf{6 0}$ points and the duration of the exam is $\mathbf{3}$ hours.
- Do not mix sub-problems from different problems.
- The sub-problems of a problem are not necessarily related to each other.
- Please use a separate sheet of paper for each problem (but not subproblem) and hand in the sheets sorted according to the problem numbers.
- Please do not use red or green pens and do not use pencil.
- Please clearly write your full name on each of the sheets you hand in.
- No auxiliary materials are allowed.

Good Luck!

Part A

1. Let X be a $C W$-complex of dimension n. Let $c=\sum_{i=1}^{l} n_{i} \cdot \sigma_{i}$ be a singular n-dimensional cycle, where $n_{i} \neq 0$ for all i and $\sigma_{i}: \Delta^{n} \rightarrow X$. Assume that $0 \neq[c] \in H_{n}(X)$.
a) $[10$ Points $]$ Assume that X has exactly one n-dimensional cell K. Prove that $\operatorname{int}(K) \subset \bigcup_{i=1}^{l} \operatorname{image}\left(\sigma_{i}\right)$.
b) [6 Points] Assume now that X has more than one n-dimensional cell, say K_{1}, \ldots, K_{r} for some $r \geq 2$. Is it true that $\operatorname{int}\left(K_{j}\right) \subset \bigcup_{i=1}^{l} \operatorname{image}\left(\sigma_{i}\right)$ for all $1 \leq j \leq l$? Justify your answer.
2. Consider the topological space M, which is obtained by taking the square in figure 1 and identifying the vertical edges marked by α according to the orientations indicated by the arrows. View M as a $C W$-complex with two 0 -dimensional cells p and q, three 1 -dimensional cells α, β and γ and one 2 -dimensional cell A. (M is the Möbius strip.)

Figure 1: The $C W$-complex M, which is a Möbius strip.
a) [6 Points] Calculate the cellular homology $H_{*}^{C W}(M)$ of M.
b) [4 Points] Let $\partial M:=\beta \cup \gamma$ be the boundary of M. Describe the map

$$
H_{1}^{C W}(\partial M) \xrightarrow{i_{*}} H_{1}^{C W}(M)
$$

induced by the inclusion $i: \partial M \hookrightarrow M$.
c) [6 Points] Calculate the cellular homology $H_{*}^{C W}(M, \partial M)$ of M relative to its boundary ∂M.
3. Let X be a path-connected topological space. We define the unreduced suspension ΣX of X to be the space

$$
\Sigma X:=X \times I /\{(x, 0) \sim(y, 0),(x, 1) \sim(y, 1) \text { for all } x, y \in X\}
$$

i.e. ΣX is obtained from $X \times I$ by collapsing the subspace $X \times\{0\}$ to a point $[X \times\{0\}]$ and $X \times\{1\}$ to another point $[X \times\{1\}]$.

Figure 2: The unreduced suspension ΣX.
a) [4 Points] Let Y be another path-connected topological space. Explain how a continuous map $f: X \rightarrow Y$ induces a continuous map $\Sigma f: \Sigma X \rightarrow \Sigma Y$.
b) [12 Points] Prove that there exists an isomorphism

$$
\tilde{H}_{i+1}(\Sigma X) \xrightarrow{\cong} \tilde{H}_{i}(X)
$$

for every $i \geq 0$, which is natural in the following sense: For every path-connected topological space Y and every continuous map $f: X \rightarrow Y$ the diagram

commutes.
4. a) [5 points] Let T be a topological space such that $T=A \cup B$ with A and B open.
i. Assume now that A, B and $A \cap B$ are acyclic. Prove that also T is acyclic.
ii. Assume that each set A, B and $A \cap B$ is either acyclic or empty. Prove that $H_{n}(T)=0 \quad \forall n \geq 1$.
Remark: Recall that a space X is acyclic if $\tilde{H}_{i}(X)=0$ for every $i \in \mathbb{Z}$. (Note that $X=\emptyset$ is NOT acyclic.)
b) [8 Points] Let X be a topological space and $A, B, C \subset X$ open sets such that $X=A \cup B \cup C$. Assume that each of
$A, \quad B, \quad C, \quad A \cap B, \quad B \cap C, \quad A \cap C$ and $A \cap B \cap C$ is either acyclic or empty. Prove that $H_{i}(X)=0 \quad \forall i \geq 2$.
c) [3 Points] Give an example of a space X with open subsets A, B, C as in exercise b) and such $H_{1}(X) \neq 0, H_{0}(X) \neq 0$ and hence conclude the statement in b) is sharp.

Part B

5. Let $\left(A_{\bullet}, d_{A}\right)$ and $\left(B_{\bullet}, d_{B}\right)$ be two chain complexes and $f: A_{\bullet} \rightarrow B_{\bullet}$ a chain map. Define the mapping cylinder $\left(Z(f) \bullet, d_{Z}\right)$ by

$$
Z(f)_{i}:=A_{i} \oplus A_{i-1} \oplus B_{i}
$$

with the differential given by

$$
d_{Z}\left(a^{\prime}, a^{\prime \prime}, b\right)=\left(d_{A}\left(a^{\prime}\right)+a^{\prime \prime},-d_{A}\left(a^{\prime \prime}\right),-f\left(a^{\prime \prime}\right)+d_{B}(b)\right) \quad \forall a^{\prime} \in A_{i}, a^{\prime \prime} \in A_{i-1}, b \in B_{i} .
$$

I.e. in matrix from we can write: $d_{Z}=\left(\begin{array}{ccc}d_{A} & I d & 0 \\ 0 & -d_{A} & 0 \\ 0 & -f & d_{B}\end{array}\right)$
a) [$\mathbf{3}$ Points] Show that $\left(Z(f)\right.$ •,$\left.d_{Z}\right)$ is a chain complex.
b) [5 Points] Consider the maps

$$
\begin{gathered}
\xi: B_{\bullet} \rightarrow Z(f) \bullet: b \mapsto(0,0, b), \\
\eta: Z(f) \bullet \rightarrow B_{\bullet}:\left(a^{\prime}, a^{\prime \prime}, b\right) \mapsto f\left(a^{\prime}\right)+b .
\end{gathered}
$$

Show that ξ and η are chain maps.
c) [4 Points] Show that ξ is a chain homotopy equivalence between $B \bullet$ and $Z(f)$.
6. Let X be a path-connected topological space and $f: X \rightarrow X$ a homeomorphism. Let \sim denote the equivalence relation $(x, 0) \sim(f(x), 1)$. We define the mapping torus T_{f} by

$$
T_{f}:=X \times I / \sim .
$$

Consider the embedding $i: X \rightarrow T_{f}: x \mapsto[(x, 0)]$ and denote by $X_{0}:=i(X) \subset T_{f}$ its image.
a) [3 Points] Consider the quotient map $q:(X \times I, X \times \partial I) \rightarrow\left(T_{f}, X_{0}\right)$. Show that this induces an isomorphism $q_{*}: H_{*}(X \times I, X \times \partial I) \rightarrow H_{*}\left(T_{f}, X_{0}\right)$.
Hint: Consider the sets $A:=(X \times(1-\epsilon, 1]) \cup(X \times[0, \epsilon)) / \sim$ and $B:=(X \times\{1\}) \cup$ $(X \times\{0\}) / \sim$ and use excision.
b) [4 Points] Consider the commutative diagram

where the vertical maps are all induced by the quotient map $q:(X \times I, X \times \partial I) \rightarrow$ (T_{f}, X_{0}) and the horizontal maps are the standard long exact sequences of a pairs of spaces.
Show that the map $j_{*}: H_{n}(X \times I) \rightarrow H_{n}(X \times I, X \times \partial I)$ in the upper long exact sequence in diagram (1) is zero $\forall n$ and that $H_{n+1}(X \times I, X \times \partial I) \cong H_{n}(X)$.
c) [5 Points] Use a) and b) to show that there exists a long exact sequence

$$
\cdots \longrightarrow H_{n}(X) \xrightarrow{I d-f_{*}} H_{n}(X) \xrightarrow{i_{*}} H_{n}\left(T_{f}\right) \longrightarrow H_{n-1}(X) \xrightarrow{I d-f_{*}} H_{n-1}(X) \cdots .
$$

Remark: This long exact sequence is called the Wang sequence.

