Algebraic Topology I

Problem set 1

Definition: For a map $f: X \to Y$, the mapping cylinder M_f is the quotient space of the disjoint union $Y \sqcup (X \times I)$ (where I := [0, 1]) obtained by identifying each $(x, 0) \in X \times I$ with $f(x) \in Y$.

The mapping cone C_f of f is defined as the quotient space $M_f/(X \times \{1\})$. There are embeddings $i_X : X \to M_f$; $x \mapsto [x, 1]$ resp. $i_Y : Y \to M_f$; $y \mapsto [y]$ of X resp. Y into the mapping cylinder of f.

Definition: $\mathbb{R}P^2$ is the topological space obtained from S^2 by identifying antipodal points, i.e. $\mathbb{R}P^2 = S^2 / \sim$, where $x \sim y$ if and only if $x = \pm y$. Alternatively, we could define $\mathbb{R}P^2$ as the topological space obtained from the unit disk D^2 by identifying antipodal points on ∂D^2 . I.e. $\mathbb{R}P^2 = D^2 / \sim$, where $x \sim y$ if and only if $x, y \in \partial D^2$ and $x = \pm y$.

- 1. Let X be a contractible space and let $r: X \to A$ be a retraction. Show that A is also contractible.
- 2. Let $f, g: X \to S^n$ be maps such that $f(x) \neq -g(x)$ for all $x \in X$. Show that $f \simeq g$.
- 3. Let $f: X \to Y$ be a map. Suppose that there exist maps $g, h: Y \to X$ such that $f \circ g \simeq \operatorname{id}_Y$ and $h \circ f \simeq \operatorname{id}_X$. Show that f is a homotopy equivalence.
- (a) Show that a map φ : M_f → Z is continuous if and only if the induced maps φ_{X×I} : X × I → Z and φ_Y : Y → Z are continuous.
 - (b) Let $f : X \to Y$ be a continuous map and let $r : M_f \to Y$ be the retract defined by r([y]) = y and r([x,t]) = f(x) for $y \in Y, x \in X$ and $t \in I$.

Show that there is a commutative diagram

such that $id_{M_f} \simeq i_Y \circ r$ and hence $M_f \simeq Y$.

(c) Show that two spaces X and Y have the same homotopy type if and only if they can be embedded as (weak) deformation retracts of the same space.

5. Consider the map $f: S^1 \to S^1$, $e^{2\pi i t} \mapsto e^{4\pi i t}$ (or $z \mapsto z^2$). Prove that $C_f \approx \mathbb{R}P^2$.