Solutions to problem set 1

Notation. $I:=[0,1]$; we omit \circ in compositions: $f g:=f \circ g$.

1. By [Bredon, Prop. I.14.5], contractibility of X means that id_{X} is homotopic to a map whose image is a singleton $\left\{x_{0}\right\} \in X$; that is, there exists a map $h: X \times I \rightarrow X$ such that $h(x, 0)=x$ and $h(x, 1)=x_{0}$ for all $x \in X$. Consider now the map $h^{\prime}=\left.r \circ h\right|_{A \times I}: A \times I \rightarrow A$. For $a \in A$, it satisfies $h^{\prime}(a, 0)=r(h(a, 0))=r(a)=a$ by the defining property of retraction, and $h^{\prime}(a, 1)=r\left(x_{0}\right)$; in other words, id_{A} is homotopic to a map with image $\left\{r\left(x_{0}\right)\right\} \subset A$, and hence A is contractible (again by [Bredon, Prop. I.14.5]).
2. Recall that $S^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=1\right\}$. We claim that the expression

$$
(x, t) \mapsto \frac{(1-t) f(x)+t g(x)}{\|(1-t) f(x)+\operatorname{tg}(x)\|}
$$

yields a well-defined map $\phi: X \times I \rightarrow S^{n}$. Pretending that this is true, note that $\phi(x, 0)=$ $f(x)$ and $\phi(x, 1)=g(x)$ for all $x \in X$, and hence f and g are homotopic.

To prove well-definedness, we must show that the denominator never vanishes. To do so, we assume the contrary, i.e., that there exists some $(x, t) \in X \times I$ such that $(1-t) f(x)+t g(x)=0$. This is equivalent to $(1-t) f(x)=-t g(x)$, from which we obtain $(1-t) \cdot\|f(x)\|=t \cdot\|g(x)\|$; since $\|f(x)\|=\|g(x)\|=1$, it follows that $1-t=t$, and hence $t=\frac{1}{2}$. Inserting this into the first equation, we obtain $f(x)=-g(x)$, which contradicts our assumption.
3. Using the assumptions $f g \simeq \operatorname{id}_{Y}$ and $h f \simeq \mathrm{id}_{X}$, we obtain

$$
f h=f h \operatorname{id}_{Y} \simeq f h f g \simeq f \operatorname{id}_{X} g=f g \simeq \operatorname{id}_{Y}
$$

Hence h is in fact a homotopy inverse of f, and thus f is a homotopy equivalence. (Similarly, one can show that g is a homotopy inverse of f.)
4. (a) Let $q: Y \sqcup(X \times I) \rightarrow M_{f}$ be the quotient map. By definition of the quotient topology, a subset $V \subset M_{f}$ is open if and only if $q^{-1}(V) \subset Y \sqcup(X \times I)$ is open. Hence we get the following:

$$
\begin{aligned}
& \phi \text { is continuous } \\
& \Longleftrightarrow \nLeftarrow \forall \subset \subset Z \text { open : } \phi^{-1}(U) \subset M_{f} \text { is open } \\
& \Longleftrightarrow \forall U \subset Z \text { open : } q^{-1} \circ \phi^{-1}(U) \subset Y \sqcup(X \times I) \text { is open } \\
& \Longleftrightarrow \forall U \subset Z \text { open }:\left\{\begin{array}{l}
\phi_{X \times I}^{-1}(U)=\left(\phi \circ q \circ i_{X \times I}\right)^{-1}(U) \subset X \times I \\
\phi_{Y}^{-1}(U)=\left(\phi \circ q \circ i_{Y}\right)^{-1}(U) \subset Y
\end{array}\right. \text { are open } \\
& \Longleftrightarrow \phi_{X \times I} \text { and } \phi_{Y} \text { are continuous. }
\end{aligned}
$$

(b) By definition of the maps that are involved we have $r i_{X}=f$ and hence the diagram is commutative.
Let $F: M_{f} \times I \rightarrow M_{f}$ be defined by:

$$
\left\{\begin{array}{l}
F\left([x, t], t^{\prime}\right)=\left[x, t\left(1-t^{\prime}\right)\right], \text { for } x \in X, t, t^{\prime} \in I \\
F\left([y], t^{\prime}\right)=[y], \text { for } y \in Y, t^{\prime} \in I
\end{array}\right.
$$

Then F is a homotopy rel Y from $i d_{M_{f}}$ to $i_{Y} \circ r$. (The continuity of F follows from the fact that $M_{f} \times I \approx M_{f \times i d_{I}}$ combined with the result of exercise 4(a).)
(c) For a very nice solution see the proof of Proposition 7.46 (p. 206) in John Lee's book Introduction to Topological Manifolds.
By definition a subspace $A \subset B$ is a deformation retract if there is a retraction $r: B \rightarrow A$ which is a right homotopy inverse of the inclusion map $i: A \hookrightarrow B$. Explicitely, this means that $r \circ i=i d_{A}$ and $i \circ r=\simeq i d_{B}$. In particular, if $A \subset B$ is a deformation retract, then A and B have the same homotopy type. So if X and Y can be embedded as weak deformation retracts of the same space Z, then X and Y both have the same homotopy type as Z and hence they are homotopy equivalent.
Conversely, suppose that $f: X \rightarrow Y$ is a homotopy equivalence. We will show that both X and Y are deformation retracts of M_{f}.
The retraction $r: M \rightarrow Y$ from 4(b) satisfies $r \circ i_{y}$ and $i_{y} \circ r \simeq i d_{M_{f}}$. This shows that Y is a (strong) deformation retract of M_{f}.
Again by $4(\mathrm{~b})$ we have $f=r \circ i_{X}$ and thus $X \xrightarrow{i_{X}} M_{f} \xrightarrow{r} Y$ is a homotopy equivalence. Since r is also a homotopy equivalence, it follows that i_{X} is a homotopy equivalence as well. Now let $g: M_{f} \rightarrow X$ be a homotopy inverse of i_{X}, i.e. $g \circ i_{X} \simeq i d_{X}$ and $i_{X} \circ g \simeq i d_{M_{f}}$. The idea is to modify g to construct a retraction $q: M_{f} \rightarrow X$ with $i_{X} \circ q \simeq i d_{M_{f}}$. Denote by $G: X \times I \rightarrow X$ a homotopy $G: g \circ i_{X} \simeq i d_{X}$. Define the homotopy $H: M_{f} \times I \rightarrow X$ by $H\left([y], t^{\prime}\right)=g([y])$ for $y \in Y$ and $t^{\prime} \in I$ and

$$
H\left([x, t], t^{\prime}\right)=\left\{\begin{array}{l}
g\left(\left[x, \frac{2 t}{2-t^{\prime}}\right]\right), \quad 0 \leq t^{\prime} \leq 2(1-t) \leq 2, x \in X, t, t^{\prime} \in I \\
G\left(x, \frac{2 t-\left(2-t^{\prime}\right)}{t}\right), \quad 0 \leq 2(1-t) \leq t^{\prime} \leq 1, x \in X, t, t^{\prime} \in I
\end{array}\right.
$$

First note that H is well-defined as a map on $(Y \sqcup(X \times I)) \times I$ because for $t^{\prime}=2(1-t)$ one has

$$
g\left(\left[x, \frac{2 t}{2-t^{\prime}}\right]\right)=g([x, 1])=G(x, 0)=G\left(x, \frac{2 t-\left(2-t^{\prime}\right)}{t}\right)
$$

Moreover, H descends to a well-defined map on $M_{f} \times I$ because

$$
H\left([x, 0], t^{\prime}\right)=g([x, 0])=g([f(x)])=H\left([f(x)], t^{\prime}\right)
$$

Consider $q: M_{f} \rightarrow X, z \mapsto H(z, 1) . \quad q$ is a retraction: $q \circ i_{X}(x)=H([x, 1], 1)=$ $G(x, 1)=x$, so $q \circ i_{X}=i d_{X}$. Moreover, $i_{X} \circ H$ is a homotopy from $i_{X} \circ g$ to $i_{X} \circ q$. Thus $i d_{M_{f}} \simeq i_{X} \circ g \simeq i_{X} \circ q$. We conclude that X is also embedded as a deformation retract of M_{f}.
5. We view $\mathbb{R} P^{2}$ as D^{2} / \sim, where \sim is the equivalence relation that identifies antipodal points on the boundary. That is, $x, y \in D^{2}$ satisfy $x \sim y$ if and only if $x=y$, or x and y both lie on $S^{1} \subset D^{2}$ and satisfy $x=-y$.
Consider the map $F: S^{1} \sqcup\left(S^{1} \times I\right) \rightarrow \mathbb{R} P^{2}$ defined on S^{1} by $e^{2 \pi i t} \mapsto\left[e^{\pi i t}\right]$ for $t \in[0,1]$, and on $S^{1} \times I$ by $\left(e^{2 \pi i t}, s\right) \mapsto\left[(1-s) e^{2 \pi i t}\right]$. (Note that the first part is well-defined and continuous, because $e^{\pi i 0}=1 \sim-1=e^{\pi i 1}$ and hence $\left[e^{\pi i 0}\right]=\left[e^{\pi i 1}\right] \in \mathbb{R} P^{2}$.)
Observe that F descends to a well-defined map $F^{\prime}: M_{f} \rightarrow \mathbb{R} P^{2}$, because $F\left(f\left(e^{2 \pi i t}\right)\right)=$ $F\left(e^{4 \pi i t}\right)=\left[e^{2 \pi i t}\right]=F\left(e^{2 \pi i t}, 0\right)$, and moreover F^{\prime} is clearly surjective. Since F^{\prime} maps all of $S^{1} \times\{1\}$ to a single point, namely $[0] \in \mathbb{R} P^{2}$, it descends further to a map $F^{\prime \prime}: C_{f} \rightarrow \mathbb{R} P^{2}$. $F^{\prime \prime}$ is still surjective. Note that $F^{\prime \prime}$ is also injective, since F^{\prime} is injective on $M_{f} \backslash\left(S^{1} \times\{1\}\right)$ with image in $\mathbb{R} P^{2} \backslash\{0\}$.
Since C_{f} is compact and $\mathbb{R} P^{2}$ is Hausdorff, we conclude using [Bredon, Theorem I.7.8] that $F^{\prime \prime}$ is a homeomorphism.

