Homework 2

1. (a) Construct a Δ-complex structure on the torus T, and use it to compute the simplicial homology groups of T.
(b) Construct a Δ-complex structure on the Klein bottle K, and use it to compute the simplicial homology groups of K.
(c) Construct a Δ-complex structure on the projective plane $\mathbb{R P}^{2}$, and use it to compute the simplicial homology groups of $\mathbb{R} \mathbb{P}^{2}$.
Though we have not proved that the homology groups are independent of the choice of Δ-complex structure we choose, you may use this fact.
2. Compute the simplicial homology groups of the Δ-complex obtained from $n+12$-simplices $\Delta_{0}^{2}, \ldots, \Delta_{n}^{2}$ by identifying all three edges of Δ_{0}^{2} to a single edge, and for $i>0$ identifying the edges $\left[v_{0}, v_{1}\right]$ and [v_{1}, v_{2}] of Δ_{i}^{2} to a single edge and the edge $\left[v_{0}, v_{2}\right]$ to the edge $\left[v_{0}, v_{1}\right]$ of Δ_{i-1}^{2}.
3. Construct a 3-dimensional Δ-complex X from n tetrahedra T_{1}, \ldots, T_{n} by the following two steps. First arrange the tetrahedra in a cyclic pattern as in the figure, so that each T_{i} shares a common vertical face with its two neighbors T_{i-1} and T_{i+1}, subscripts being taken mod n. Then identify the bottom face of T_{i} with the top face of T_{i+1} for each i. Show the simplicial homology groups of X in dimensions $0,1,2,3$ are $\mathbb{Z}, \mathbb{Z}_{n}, 0, \mathbb{Z}$, respectively.

4. Suppose that X is a path-connected space and let $f: X \rightarrow X$ be a map. Prove that the induced map $f_{*}: H_{0}(X) \rightarrow H_{0}(X)$ is the identity. What happens if X is not path-connected?
5. (optional) We mentioned in class that homology has the added benefit of being easy to compute. Software exists to compute it for a special type of Δ-complexes called simplicial complexes. Formally, a geometric simplicial complexes \mathcal{K} is a set of simplices (in Euclidean space) that satisfies the following conditions:
(a) Every face of a simplex from \mathcal{K} is also in \mathcal{K}.
(b) The non-empty intersection of any two simplices σ_{1} and σ_{2} in \mathcal{K} is a face of both σ_{1} and σ_{2}.

Geometric simplicial complexes can be represented by abstract simplicial complexes that only retain the information about the connections (edges, triangles, etc) between the vertices, but not the coordinates:
Definition An abstract simplicial complex is given by the following data.

- A set V of vertices or 0 -simplices.
- For each $k \geq 1$, a set of k-simplices $\sigma=\left[v_{0}, v_{1}, \ldots, v_{k}\right]$, where $v_{i} \in V$.
- Each k-simplex has $k+1$ faces obtained by deleting one of the vertices. The following membership property must be satisfied: if σ is in the simplicial complex, then all faces of σ must be in the simplicial complex.

One must also make adjustments in the construction of the chain complex - instead of forming the chain groups with coefficients from \mathbb{Z}, we take them from some finite field \mathbb{Z}_{p} (very often $p=2$). With this the chain groups become vector spaces and boundary maps linear maps. All the computations can be carried out using linear algebra.
A good software to start with is Javaplex, available here. To use it you will first need to download Matlab. Use chapter 1 of the accompanying Javaplex tutorial (available here) to install Javaplex on your computer.
(a) Read the first 6 pages of the Javaplex tutorial (up to section 3.2).
(b) Compute the homology groups of the house example from class over $\mathbb{Z} / 2 \mathbb{Z}$. Compare the results to ours from class.
(c) Find a simplicial complex structure on the torus and determine its homology groups over $\mathbb{Z} / 2 \mathbb{Z}$.
(d) Find a simplicial complex structure on Klein bottle and determine its homology groups over $\mathbb{Z} / 2 \mathbb{Z}$.
(e) Compare the homology groups of the Klein bottle and the torus. What do you notice? Compute homology groups of both over $\mathbb{Z} / 3 \mathbb{Z}$ using Javaplex. Are you able to distinguish between them?

