Homework 2

- 1. (a) Construct a Δ -complex structure on the torus T, and use it to compute the simplicial homology groups of T.
 - (b) Construct a Δ -complex structure on the Klein bottle K, and use it to compute the simplicial homology groups of K.
 - (c) Construct a Δ -complex structure on the projective plane \mathbb{RP}^2 , and use it to compute the simplicial homology groups of \mathbb{RP}^2 .

Though we have not proved that the homology groups are independent of the choice of Δ -complex structure we choose, you may use this fact.

- 2. Compute the simplicial homology groups of the Δ -complex obtained from n+1 2-simplices $\Delta_0^2, \ldots, \Delta_n^2$ by identifying all three edges of Δ_0^2 to a single edge, and for i > 0 identifying the edges $[v_0, v_1]$ and $[v_1, v_2]$ of Δ_i^2 to a single edge and the edge $[v_0, v_2]$ to the edge $[v_0, v_1]$ of Δ_{i-1}^2 .
- 3. Construct a 3-dimensional Δ -complex X from n tetrahedra T_1, \ldots, T_n by the following two steps. First arrange the tetrahedra in a cyclic pattern as in the figure, so that each T_i shares a common vertical face with its two neighbors T_{i-1} and T_{i+1} , subscripts being taken mod n. Then identify the bottom face of T_i with the top face of T_{i+1} for each i. Show the simplicial homology groups of X in dimensions 0, 1, 2, 3 are $\mathbb{Z}, \mathbb{Z}_n, 0, \mathbb{Z}$, respectively.

- 4. Suppose that X is a path-connected space and let $f: X \to X$ be a map. Prove that the induced map $f_*: H_0(X) \to H_0(X)$ is the identity. What happens if X is not path-connected?
- 5. (optional) We mentioned in class that homology has the added benefit of being easy to compute. Software exists to compute it for a special type of Δ -complexes called simplicial complexes. Formally, a **geometric simplicial complexes** \mathcal{K} is a set of simplices (in Euclidean space) that satisfies the following conditions:
 - (a) Every face of a simplex from \mathcal{K} is also in \mathcal{K} .
 - (b) The non-empty intersection of any two simplices σ_1 and σ_2 in \mathcal{K} is a face of both σ_1 and σ_2 .

Geometric simplicial complexes can be represented by **abstract simplicial complexes** that only retain the information about the connections (edges, triangles, etc) between the vertices, but not the coordinates:

Definition An abstract simplicial complex is given by the following data.

- A set V of vertices or 0-simplices.
- For each $k \ge 1$, a set of k-simplices $\sigma = [v_0, v_1, \dots, v_k]$, where $v_i \in V$.
- Each k-simplex has k + 1 faces obtained by deleting one of the vertices. The following membership property must be satisfied: if σ is in the simplicial complex, then all faces of σ must be in the simplicial complex.

One must also make adjustments in the construction of the chain complex – instead of forming the chain groups with coefficients from \mathbb{Z} , we take them from some finite field \mathbb{Z}_p (very often p = 2). With this the chain groups become vector spaces and boundary maps linear maps. All the computations can be carried out using linear algebra.

A good software to start with is Javaplex, available here. To use it you will first need to download Matlab. Use chapter 1 of the accompanying Javaplex tutorial (available here) to install Javaplex on your computer.

- (a) Read the first 6 pages of the Javaplex tutorial (up to section 3.2).
- (b) Compute the homology groups of the house example from class over $\mathbb{Z}/2\mathbb{Z}$. Compare the results to ours from class.
- (c) Find a simplicial complex structure on the torus and determine its homology groups over $\mathbb{Z}/2\mathbb{Z}$.
- (d) Find a simplicial complex structure on Klein bottle and determine its homology groups over Z/2Z.
- (e) Compare the homology groups of the Klein bottle and the torus. What do you notice? Compute homology groups of both over Z/3Z using Javaplex. Are you able to distinguish between them?