2. Compute the simplicial homology groups of the Δ-complex obtained from $n+1$ 2-simplices $\Delta_{0}^{2}, \ldots, \Delta_{n}^{2}$ by identifying all three edges of Δ_{0}^{2} to a single edge, and for $i>0$ identifying the edges $\left[v_{0}, v_{1}\right]$ and $\left[v_{1}, v_{2}\right]$ of Δ_{i}^{2} to a single edge and the edge $\left[v_{0}, v_{2}\right]$ to the edge $\left[v_{0}, v_{1}\right]$ of Δ_{i-1}^{2}.

Problem 6, §2.1 We begin by describing the equivalence classes of k-faces, $k=0,1,2$. Let $\Delta_{i}\left[v_{0}^{i} v_{1}^{i} v_{2}^{i}\right]$.

- The 0-faces. We have

$$
\left[v_{0}^{0} v_{1}^{0}\right] \sim\left[v_{1}^{0} v_{2}^{0}\right] \sim\left[v_{0}^{0} v_{2}^{0}\right]
$$

so that

$$
v_{0}^{0} \sim v_{1}^{0} \sim v_{2}^{0}
$$

Denote by v^{0} the equivalence class containing these vertices. Note that

$$
\begin{gathered}
{\left[v_{0}^{1} v_{2}^{1}\right] \sim\left[v_{0}^{0} v_{1}^{0}\right] \Longrightarrow v_{0}^{1} \sim v^{0}, \quad v_{2}^{1} \sim v^{0}} \\
{\left[v_{0}^{1} v_{1}^{1}\right] \sim\left[v_{1}^{1} v_{2}^{1}\right] \Longrightarrow v_{1}^{1} \sim v^{0} .}
\end{gathered}
$$

Iterating this procedure we deduce that there exists a single equivalence class of vertices.

- The 1-faces. Denote by e_{0} the equivalence class containing the edges of Δ_{0}. Then the edge $\left[v_{0}^{1} v_{2}^{1}\right]$ belongs to this equivalence class. We also have another n-equivalence classes e_{i} containing the pair $\left[v_{0}^{i} v_{1}^{i}\right],\left[v_{1}^{i} v_{2}^{i}\right]$. Observe that

$$
\left[v_{0}^{i} v_{2}^{i}\right] \sim e_{i-1}, \quad i=1, \cdots, n
$$

- The 2-faces. We have $n+1$ equivalence classes of 2-faces, $\Delta_{0}, \Delta_{1}, \cdots, \Delta_{n}$.

$$
\begin{gathered}
C_{2}=\mathbb{Z}\left\langle\Delta_{0}, \cdots, \Delta_{1}\right\rangle, \quad C_{1}=\mathbb{Z}\left\langle e_{0}, e_{1}, \cdots, e_{n}\right\rangle \\
\partial \Delta_{0}=e^{0}, \quad \partial \Delta_{i}=\left[v_{0}^{i} v_{1}^{i}\right]+\left[v_{1}^{i} v_{2}^{i}\right]-\left[v_{0}^{i} v_{2}^{i}\right]=2 e_{i}-e_{i-1} .
\end{gathered}
$$

- $\underline{\partial: C_{1} \rightarrow C_{0} . \text { We have }}$

$$
C_{0}=\mathbb{Z}\left\langle v^{0}\right\rangle
$$

and

$$
\partial e_{i}=0, \quad \forall i=0,1, \cdots, n
$$

- \underline{Z}_{2} and H_{2}. We have $B_{2}=0$ and

$$
Z_{2}=\left\{\sum_{i=0}^{n} x_{i} \Delta_{i} ; \quad \sum_{i=0}^{n} x_{i} \partial \Delta_{i}=0\right\}
$$

Thus

$$
\sum_{i=0}^{n} x_{i} \Delta_{i} \in Z_{2} \Longleftrightarrow\left\{\begin{array}{ccc}
x_{n} & = & 0 \\
-x_{n}+2 x_{n-1} & = & 0 \\
\vdots & \vdots & \vdots \\
-x_{2}+2 x_{1} & = & 0 \\
-x_{1}+x_{0} & = & 0
\end{array}\right.
$$

We deduce $Z_{2}=0$ so that $H_{2}=0$.

- Z_{1} and H_{1}. We have $Z_{1}=C_{1}$ and H_{1} has the presentation

$$
\left\langle e_{0}, e_{1}, \cdots, e_{n} \mid 0=2 e_{n}-e_{n-1}=\cdots 2 e_{1}-e_{0}=e_{0}\right\rangle
$$

Hence

$$
e_{n-1}=2 e_{n}, \quad e_{n-2}=2 e_{n-1}, \cdots, e_{0}=2 e_{1}=0
$$

so that H_{1} is the cyclic group of order 2^{n} generated by e_{n}. By general arguments we have $H_{0}=\mathbb{Z}$.
3. Construct a 3-dimensional Δ complex X from n tetrahedra T_{1}, \ldots, T_{n} by the following two steps. First arrange the tetrahedra in a cyclic pattern as in the figure, so that each T_{i} shares a common vertical face with its two neighbors T_{i-1} and T_{i+1}, subscripts being taken mod n. Then identify the bottom face of T_{i} with the top face of T_{i+1} for each i. Show the simplicial homology groups of X in dimensions $0,1,2,3$ are $\mathbb{Z}, \mathbb{Z}_{n}, 0, \mathbb{Z}$, respectively.

Problem 8, §2.1 Hatcher. Denote by $\left[V_{0}^{i} V_{1}^{i} V_{2}^{i} V_{3}^{i}\right]$ the i-th 3 -simplex.

$$
\begin{aligned}
& V_{0}^{i} V_{1}^{i} V_{2}^{i} \sim V_{0}^{i+1} V_{1}^{i+1} V_{3}^{i+1} \\
& V_{1}^{i} V_{2}^{i} V_{3}^{i} \sim V_{0}^{i+1} V_{2}^{i+1} V_{3}^{i+1}
\end{aligned}
$$

Figure 2. Cyclic identifications of simplices
To describe the associated chain complex we need to understand the equivalence classes of k-faces, $k=0,1,2,3$.

- 0-faces. We deduce $V_{0}^{i} \sim V_{0}^{i+1} \forall i \bmod n$ and we denote by U_{0} the equivalence class containing V_{0}^{i}.

Similarly $V_{1}^{i} \sim V_{1}^{i+1}$ and we denote by U_{1} the corresponding equivalence class. Since $V_{1}^{i} \sim V_{0}^{i+1}$ we deduce $U_{0}=U_{1}$.

Now observe that $V_{2}^{i} \sim V_{2}^{i+1}$ and we denote by U_{2} the corresponding equivalence class. Similarly the vertices V_{3}^{i} determine a homology class U_{3} and we deduce from $V_{2}^{i} \sim V_{3} i+1$ that $U_{2}=U_{3}$. Thus we have only two equivalence classes of vertices, U_{0} and U_{2}. The vertices V_{0}^{i}, V_{1}^{j} belong to U_{0} while the vertices V_{2}^{i}, V_{3}^{j} belong to U_{2}.

- 1-faces. The simplex T^{i} has six 1-faces (edges) (see Figure 2).

A vertical edge $v_{i}=\left[V_{2}^{i} V_{3}^{i}\right]$.
A horizontal edge $h_{i}=\left[V_{0}^{i} V_{1}^{i}\right]$.
Two bottom edges: bottom-right $b r_{i}=\left[V_{1}^{i} V_{2}^{i}\right]$ and bottom-left $b l_{i}=\left[V_{0}^{i} V_{2}^{i}\right]$.
Two top edges: top-right $\operatorname{tr}_{i}=\left[V_{1}^{i} V_{3}^{i}\right]$ and top-left $t l_{i}=\left[V_{0}^{i} V_{3}^{i}\right]$.
Inspecting Figure 2 we deduce the following equivalence relations.

$$
\begin{align*}
& b r_{i} \sim b l_{i+1}, \quad t r_{i} \sim t l_{i+1}, \quad v_{i} \sim v_{i+1} \tag{0.1}\\
& h_{i} \sim h_{i+1}, \quad b l_{i} \sim t l_{i+1}, \quad b r_{i} \sim t r_{i+1} \tag{0.2}
\end{align*}
$$

We denote by v the equivalence class containing the vertical edges and by h the equivalence class containing the horizontal edges.

Observe next that

$$
b l_{i} \sim t l_{i+1} \sim t r_{i}, \quad \forall i
$$

so that $b l_{i} \sim t r_{i}$ for all i. Denote by e_{i} the equivalence class containing $b l_{i}$. Observe that

$$
b l_{i} \sim t r_{i} \sim e_{i}, \quad t l_{i} \sim e_{i-1}, \quad b r_{i} \sim e_{i+1} .
$$

We thus have $(n+2)$ equivalence classes of edges v, h and $e_{i}, i=1, \cdots, n$.

- 2-faces. Each simplex T^{i} has four 2-faces

A bottom face $B_{i}=\left[V_{0}^{i} V_{1}^{i} V_{2}^{i}\right]$.
A top face $\tau_{i}=\left[V_{0}^{i} V_{1}^{i} V_{3}^{i}\right]$.
A left face $L_{i}=\left[V_{0}^{i} V_{2}^{i} V_{3}^{i}\right]$.
A right face $R_{i}=\left[V_{1}^{i} V_{2}^{i} V_{3}^{i}\right]$.
We have the identifications

$$
R_{i} \sim L_{i+1}, \quad B_{i} \sim \tau_{i+1}
$$

We denote by B_{i} the equivalence class of B_{i}, by L_{i} the equivalence class of L_{i} and by R_{i} the equivalence class of R_{i}. Observe that

$$
R_{i}=L_{i+1}, \forall i \quad \bmod n
$$

There are exactly $2 n$ equivalence classes of 2 -faces.

- 3-faces. There are exactly n three dimensional simplices T^{1}, \cdots, T^{n}.
- The associated chain complex.

$$
\begin{gathered}
C_{0}=\mathbb{Z}\left\langle U_{0}, U_{2}\right\rangle, \quad C_{1}=\mathbb{Z}\left\langle v, h, e_{i} ; \quad 1 \leq i \leq n\right\rangle \\
C_{2}=\mathbb{Z}\left\langle B_{i}, R_{j} ; \quad 1 \leq i, j, k \leq n\right\rangle, \quad C_{3}=\mathbb{Z}\left\langle T^{i} ; \quad 1 \leq i \leq n\right\rangle .
\end{gathered}
$$

The boundary operators are defined as follows.

- $\underline{\partial: C_{3} \rightarrow C_{2}}$

$$
\partial T^{i}=R_{i}-L_{i}+\tau_{i}-B_{i}=R_{i}-R_{i-1}+B_{i-1}-B_{i} .
$$

- $\underline{\partial: C_{2} \rightarrow C_{1}}$

$$
\partial B_{i}=h+b r_{i}-b l_{i}=h+e_{i+1}-e_{i}, \quad \partial R_{i}=v-t r_{i}+b r_{i}=v+e_{i+1}-e_{i},
$$

- $\underline{\partial: C_{1} \rightarrow C_{0}}$

$$
\partial e_{i}=U_{2}-U_{0}, \quad \partial h=0, \quad \partial v=0
$$

For every sequence of elements $x=\left(x_{i}\right)_{i \in \mathbb{Z}}$ we define its "derivative" to be the sequence

$$
\Delta_{i} x=\left(x_{i+1}-x_{i}\right), \quad i \in \mathbb{Z}
$$

Using this notation we can rewrite

$$
\partial T^{i}=\Delta_{i-1} R-\Delta_{i-1} B, \quad \partial B_{i}=h+\Delta_{i} e, \quad \partial R_{i}=v+\Delta_{i} e .
$$

- The groups of cycles.

$$
\begin{gathered}
Z_{0}=C_{0} \\
Z_{1}=\left\{a h+b v+\sum_{i} k_{i} e_{i} \in C_{1} ; \quad a, b, k_{i} \in \mathbb{Z}, \quad \sum_{i} k_{i}=0\right\} \\
=\operatorname{span}_{\mathbb{Z}}\left\{v, h, \Delta_{i} e ; \quad 1 \leq i \leq n\right\}^{1} .
\end{gathered}
$$

[^0]Suppose

$$
c=\sum_{i} x_{i} B_{i}+\sum_{j} y_{j} R_{j} \in Z_{2}
$$

Then

$$
0=\partial C=\left(\sum_{i} x_{i}\right) h+\left(\sum_{j} y_{j}\right) v+\sum_{i}\left(x_{i}+y_{i}\right) \Delta_{i} e
$$

(use Abel's trick ${ }^{2}$)

$$
=\left(\sum_{i} x_{i}\right) h+\left(\sum_{j} y_{j}\right) v-\sum_{i} \Delta_{i}(x+y) e_{i+1} .
$$

We deduce

$$
\sum_{i} x_{i}=\sum_{j} y_{j}=0, \quad \Delta_{i}(x+y)=\Delta_{i} x+\Delta_{i} y=0, \quad \forall y
$$

The last condition implies that $\left(x_{i}+y_{i}\right)$ is a constant α independent of i. Using the first two conditions we deduce

$$
0=\sum_{i}\left(x_{i}+y_{i}\right)=n \alpha
$$

so that $x_{i}=-y_{i}$, for all i. This shows

$$
Z_{2}=\left\{\sum_{i} x_{i}\left(B_{i}-R_{i}\right) ; \quad x_{i} \in \mathbb{Z}, \quad \sum_{i} x_{i}=0\right\}
$$

To find Z_{3} we proceed similarly. Suppose

$$
c=\sum_{i} x_{i} T^{i} \in Z_{3}
$$

Then

$$
0=\partial c=\sum_{i} x_{i} \Delta_{i-1}(R-B)=-\sum_{i}\left(R_{i}-B_{i}\right) \Delta_{i} x=-\sum\left(\Delta_{i} x\right) R_{i}+\sum_{i}\left(\Delta_{i} x\right) B_{i}
$$

We deduce $\Delta_{i} x=0$ for all i, i.e. x_{i} is independent of i. We conclude that

$$
Z_{3}=\left\{x T ; \quad x \in \mathbb{Z} ; \quad T=\sum_{i} T^{i}\right\}
$$

In particular we conclude $H_{3} \cong \mathbb{Z}$.

- The groups of boundaries and the homology. We have

$$
B_{0}=\operatorname{span}_{\mathbb{Z}}\left(U_{2}-U_{0}\right) \subset \mathbb{Z}\left\langle U_{0}, U_{2}\right\rangle
$$

We deduce

$$
\begin{gathered}
H_{0}=Z_{0} / B_{0}=C_{0} / B_{0}=\mathbb{Z}\left\langle U_{0}, U_{2}\right\rangle / \operatorname{span}_{\mathbb{Z}}\left(U_{2}-U_{0}\right) \cong \mathbb{Z} \\
B_{1}=\operatorname{span}_{\mathbb{Z}}\left(\partial B_{i}, \partial R_{j} ; \quad 1 \leq i, j \leq n\right) \subset \mathbb{Z}\left\langle h, v, e_{i} ; \quad 1 \leq i \leq n\right\rangle
\end{gathered}
$$

Thus H_{1} admits the presentation

$$
H_{1}=Z_{1} / B_{1}=\left\langle h, v, \Delta_{i} e ; \quad h=v=-\Delta_{i} e, \sum_{i} \Delta_{i} e=0 \quad 1 \leq i \leq n\right\rangle
$$

[^1]Using the equality

$$
\sum_{i=1}^{n} \Delta_{i} e=0
$$

we deduce $n h=n v=0$. This shows $H_{1} \cong \mathbb{Z} / n \mathbb{Z}$.
Using the fact that for every sequence $x_{i} \in \mathbb{Z} i \in \mathbb{Z} / n \mathbb{Z}$ such that $\sum_{i} x_{i}=0$ there exists a sequence $y_{i} \in \mathbb{Z}, i \in \mathbb{Z} / n \mathbb{Z}$ such that

$$
x_{i}=\Delta_{i} y, \quad \forall i
$$

Any element $c \in Z_{2}$ has the form

$$
c=\sum_{i} x_{i}\left(R_{i}-B_{i}\right),
$$

where $\sum_{i} x_{i}=0$. Choose y_{i} as above such that $x_{i}=-\Delta_{i} y, \forall i \bmod n$. Then

$$
c=\partial \sum_{i} y_{i} T^{i}
$$

so that $Z_{2}=B_{2}$, i.e. $H_{2}=0$.
5. Solutions (c), (d), (e) are included with Javaplex.

[^0]: ${ }^{1}$ Here we use the elementary fact that the subgroup of \mathbb{Z}^{n} described by the condition $x_{1}+\cdots+x_{n}=0$ is a free Abelian group with basis $e_{2}-e_{1}, e_{3}-e_{2}, \cdots, e_{n}-e_{n-1}$, where $\left(e_{i}\right)$ is the canonical basis of \mathbb{Z}^{n}

[^1]: ${ }^{2}$ Abel's trick is a discrete version of the integration-by-parts formula. More precisely if R is a commutative ring, M is an R-module, $\left(x_{i}\right)_{i \in Z}$ is a sequence in $R,\left(y_{i}\right)_{i \in Z}$ is a sequence in M then we have

 $$
 \sum_{i=1}^{n}\left(\Delta_{i} x\right) \cdot y_{i}=x_{n+1} y_{n}-x_{1} y_{0}-\sum_{j=1}^{n} x_{j} \cdot\left(\Delta_{j-1} y\right)
 $$

