Solutions to problem set 5

1. Denote by $D_{1}, D_{2}, D_{3} \subset X$ the images of the three discs that get glued together. With $A:=D_{1} \cup D_{2}$ and $B:=D_{2} \cup D_{3}$, we have $X=A \cup B$. We will apply Mayer-Vietoris to (X, A, B). (The fact that the interiors of A and B do not cover X does not cause a problem here, because A and B have open neighbourhoods A^{\prime} and B^{\prime} which deformation retract onto them, obtained by adding a small "collar" neighbourhood to each, and such that $A^{\prime} \cap B^{\prime}$ deformation retracts onto $A \cap B$. Convince yourself of that!).
A and B are homeomorphic to S^{n}, and $A \cap B=D_{2}$ is a copy of D^{n}. Hence $H_{*}(A \cap B)$ vanishes except in degree 0 , and $H_{*}(A), H_{*}(B)$ vanish except in degrees 0 and n. This implies that the third arrow in the following portion of the Mayer-Vietoris sequence is an isomorphism for all $k \geq 2$:

$$
0 \rightarrow H_{k}(A \cap B) \rightarrow H_{k}(A) \oplus H_{k}(B) \rightarrow H_{k}(X) \rightarrow H_{k-1}(A \cap B) \rightarrow \ldots
$$

i.e., $H_{k}(X) \cong H_{k}(A) \oplus H_{k}(B)$ for all $k \geq 2$. For $k=1$, we obtain

$$
0 \rightarrow H_{1}(A) \oplus H_{1}(B) \rightarrow H_{1}(X) \rightarrow H_{0}(A \cap B) \rightarrow H_{0}(A) \oplus H_{0}(B) \rightarrow H_{0}(X) \rightarrow 0
$$

Note that $H_{0}(A \cap B) \rightarrow H_{0}(A) \oplus H_{0}(B)$ is injective as $A \cap B=D_{2}$ is path-connected, and hence $H_{1}(X) \rightarrow H_{0}(A \cap B)$ is zero by exactness. Hence we obtain an isomorphism $H_{1}(X) \cong H_{1}(A) \oplus H_{1}(B)$ also in this case. Moreover, it is clear that $H_{0}(X) \cong \mathbb{Z}$ as X is path-connected. Putting all together, we obtain

$$
H_{k}(X)= \begin{cases}\mathbb{Z}, & k=0 \\ \mathbb{Z}^{2}, & k=n \\ 0, & \text { otherwise }\end{cases}
$$

2. We view $\mathbb{R} P^{2}$ as D^{2} / \sim, the quotient of D^{2} obtained by identifying antipodal points on $S^{1}=\partial D^{2}$. Let $A \subset \mathbb{R} P^{2}$ be the image of the interior of D^{2} under the projection $D^{2} \rightarrow$ $\mathbb{R} P^{2}$, and let $B \subset \mathbb{R} P^{2}$ be the image of a collar neighbourhood of ∂D^{2}, homeomorphic to $[0, \varepsilon) \times \partial D^{2}$. The subsets form an open cover of $\mathbb{R} P^{2}$, and $A \cap B \simeq S^{1}$. The Mayer-Vietoris sequence for $\left(\mathbb{R} P^{2}, A, B\right)$ is

$$
\begin{aligned}
0 \rightarrow H_{2}\left(\mathbb{R} P^{2}\right) & \rightarrow H_{1}(A \cap B) \rightarrow H_{1}(A) \oplus H_{1}(B) \rightarrow H_{1}\left(\mathbb{R} P^{2}\right) \\
& \rightarrow H_{0}(A \cap B) \rightarrow H_{0}(A) \oplus H_{0}(B) \rightarrow H_{0}\left(\mathbb{R} P^{2}\right) \rightarrow 0
\end{aligned}
$$

Note that $H_{0}(A \cap B) \rightarrow H_{0}(A) \oplus H_{0}(B)$ is injective since $A \cap B \simeq S^{1}$ is path-connected; moreover $H_{1}(A \cap B)=\mathbb{Z}=H_{1}(B)$, and $H_{1}(A)=0$. Hence we obtain an exact sequence

$$
0 \rightarrow H_{2}\left(\mathbb{R} P^{2}\right) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow H_{1}\left(\mathbb{R} P^{2}\right) \rightarrow 0
$$

The middle map $\mathbb{Z} \rightarrow \mathbb{Z}$ is multiplication by 2 because the canonical map $D^{2} \rightarrow \mathbb{R} P^{2}$ restricts to a degree 2 map on ∂D^{2}. It follows that $H_{2}\left(\mathbb{R} P^{2}\right)=0$ and $H_{1}\left(\mathbb{R} P^{2}\right)=\mathbb{Z}_{2}$; moreover $H_{0}\left(\mathbb{R} P^{2}\right)=\mathbb{Z}$ as $\mathbb{R} P^{2}$ is path-connected.
3. Let $A \subset K$ be the image of the interior of I^{2} under the projection $I^{2} \rightarrow K$, and let $B \subset K$ be the image of a neighbourhood of ∂I^{2} homeomorphic to $[0, \varepsilon) \times \partial I^{2}$. Note that A is homeomorphic to D^{2}, while B deformation retracts onto the image of ∂I^{2} in K, which is homeomorphic to $S^{1} \vee S^{1}$. The intersection $A \cap B$ is homotopy equivalent to S^{1}. By the
same arguments as in the previous problem, the Mayer-Vietoris sequence for (K, A, B) yields an exact sequence of the form

$$
0 \rightarrow H_{2}(K) \rightarrow H_{1}(A \cap B) \rightarrow H_{1}(B) \rightarrow H_{1}(K) \rightarrow 0
$$

For suitable identitifications $H_{1}(A \cap B) \cong \mathbb{Z}$ and $H_{1}(B) \cong \mathbb{Z}^{2}$, the middle map is $\mathbb{Z} \xrightarrow{(0,2)} \mathbb{Z}^{2}$. It follows that $H_{2}(K)=0, H_{1}(K)=\mathbb{Z}_{2} \oplus \mathbb{Z}$; moreover, $H_{0}(K)=\mathbb{Z}$ as K is path-connected.
4. Denote by P our polygon and by $p: P \rightarrow \Sigma_{g}$ the canonical projection. Let A be the image of the interior of P under p, and let B be the image of a neighbourhood of ∂P which is homeomorphic to $[0, \varepsilon) \times S^{1}$. From the Mayer-Vietoris sequence for $\left(\Sigma_{g}, A, B\right)$ we obtain an exact sequence

$$
0 \rightarrow H_{2}\left(\Sigma_{g}\right) \rightarrow H_{1}(A \cap B) \rightarrow H_{1}(B) \rightarrow H_{1}\left(\Sigma_{g}\right) \rightarrow 0
$$

by the same argument as in the previous problems. The image of ∂P under p, considered as a loop in Σ_{g}, represents the class $\left[a_{1}\right]\left[b_{1}\right]\left[a_{1}^{-1}\right]\left[b_{1}^{-1}\right] \ldots\left[a_{g}\right]\left[b_{g}\right]\left[a_{g}^{-1}\right]\left[b_{g}^{-1}\right]$ in $\pi_{1}(B)$, which lies in the commutator subgroup of $\pi_{1}(B)$; hence its image in $H_{1}(B)$ vanishes. The map $H_{1}(A \cap B) \rightarrow H_{1}(B)$ is therefore zero, and we obtain $H_{2}\left(\Sigma_{g}\right) \cong H_{1}(A \cap B) \cong \mathbb{Z}$ and $H_{1}\left(\Sigma_{g}\right) \cong H_{1}(B) \cong \mathbb{Z}^{2 g}$ by exactness and because $A \cap B \simeq S^{1}$ and $B \simeq S_{1} \vee \cdots \vee S^{1}(2 g$ times). $H_{0}\left(\Sigma_{g}\right) \cong \mathbb{Z}$ is clear because Σ_{g} is path-connected.
5. We will show by induction that $H_{0}\left(\Sigma_{g}\right) \cong \mathbb{Z}, H_{1}\left(\Sigma_{g}\right) \cong \mathbb{Z}^{2 g}$, and $H_{2}\left(\Sigma_{g}\right) \cong \mathbb{Z}$. For $\Sigma_{1}=T^{2}$, this can be shown using e.g. cellular homology. To show it holds for Σ_{g+1} (assuming it's already shown for $\left.\Sigma_{k}, k=1, \ldots, g\right)$, consider the cover of Σ_{g+1} by open subsets A and B, where A and B are homeomorphic to $\Sigma_{g}^{*}:=\Sigma_{g} \backslash\{\mathrm{pt}\}$ resp. $\Sigma_{1}^{*}:=\Sigma_{1} \backslash\{\mathrm{pt}\}$; the existence of such a cover is indicated by the definition of Σ_{g+1} as the connected sum of Σ_{g} and Σ_{1}.
The punctured surface Σ_{g}^{*} is homotopy equivalent to $S^{1} \vee \cdots \vee S^{1}$, a wedge of $2 g$ circles (one can see this using the polygon description of Σ_{g} given in problem 5.5), and hence $H_{2}\left(\Sigma_{g}^{*}\right) \cong 0$, $H_{1}\left(\Sigma_{g}^{*}\right) \cong \mathbb{Z}^{2 g}$ as one can see using e.g. cellular homology. Since moreover the intersection $A \cap B$ is homotopy equivalent to S^{1}, the Mayer-Vietoris sequence for $\left(\Sigma_{g+1}, A, B\right)$ is

$$
\begin{equation*}
0 \rightarrow H_{2}\left(\Sigma_{g+1}\right) \rightarrow H_{1}(A \cap B) \rightarrow H_{1}(A) \oplus H_{1}(B) \rightarrow H_{1}\left(\Sigma_{g+1}\right) \rightarrow H_{0}(A \cap B) \rightarrow \ldots \tag{1}
\end{equation*}
$$

The homomorphism $H_{1}(A \cap B) \rightarrow H_{1}(A) \oplus H_{1}(B)$ is zero because $A \cap B$ deformation retracts onto a loop which lies in the commutator subgroup of both $\pi_{1}(A)$ and $\pi_{1}(B)$ (using the polygon description, see the solution of problem 5.5); the homomorphism $H_{1}\left(\Sigma_{g+1}\right) \rightarrow$ $H_{0}(A \cap B)$ is zero because $A \cap B$ is path-connected, and hence the inclusions of S^{1} into A and B induce injective maps on H_{0}. We therefore obtain isomorphisms $H_{2}\left(\Sigma_{g+1}\right) \cong H_{1}\left(S^{1}\right) \cong \mathbb{Z}$ and $H_{1}\left(\Sigma_{g+1}\right) \cong H_{1}\left(\Sigma_{g}^{*}\right) \oplus H_{1}\left(\Sigma_{1}^{*}\right) \cong \mathbb{Z}^{2 g} \oplus \mathbb{Z}^{2}=\mathbb{Z}^{2 g+2}$, as required. $H_{0}\left(\Sigma_{g+1}\right) \cong \mathbb{Z}$ is clear as Σ_{g+1} is path-connected.
(Remark. Using the polygon description of Σ_{g} is a bit of a short-cut, with which one could dispense as follows. First one computes inductively that $H_{2}\left(\Sigma_{g}^{*}\right)=0$ and $H_{1}\left(\Sigma_{g}^{*}\right)=$ $\mathbb{Z}^{2 g}$, viewing Σ_{g+1} as the connected sum of Σ_{g} and Σ_{1}^{*} and applying Mayer-Vietoris to $\left(\Sigma_{g+1}^{*}, \Sigma_{g}^{*}, \Sigma_{1}^{* *}\right)$, where $\Sigma_{1}^{* *}$ denotes a twice-punctured torus. To get the induction started, one computes that $H_{2}\left(\Sigma_{1}^{*}\right)=0=H_{2}\left(\Sigma_{1}^{* *}\right), H_{1}\left(\Sigma_{1}^{*}\right)=\mathbb{Z}^{2}$ and $H_{1}\left(\Sigma_{1}^{* *}\right)=\mathbb{Z}^{3}$ using cellular homology. The Mayer-Vietoris sequence for $\left(\Sigma_{g+1}^{*}, \Sigma_{g}^{*}, \Sigma_{1}^{* *}\right)$ yields an exact sequence

$$
0 \rightarrow H_{2}\left(\Sigma_{g+1}^{*}\right) \rightarrow H_{1}\left(S^{1}\right) \rightarrow H_{1}\left(\Sigma_{g}^{*}\right) \oplus H_{1}\left(\Sigma_{1}^{* *}\right) \rightarrow H_{1}\left(\Sigma_{g+1}^{*}\right) \rightarrow 0
$$

The map $H_{1}\left(S^{1}\right) \rightarrow H_{1}\left(\Sigma_{g}^{*}\right) \oplus H_{1}\left(\Sigma_{1}^{* *}\right)$ is injective because the intersection $\Sigma_{g}^{*} \cap \Sigma_{1}^{* *} \simeq S^{1}$ generates a \mathbb{Z}-summand in $H_{1}\left(\Sigma_{1}^{* *}\right)$ (check this using cellular homology), and hence the
second component of the map is non-zero. This implies that $H_{2}\left(\Sigma_{g+1}^{*}\right)=0$ and $H_{1}\left(\Sigma_{g+1}^{*}\right) \cong$ $\mathbb{Z}^{2 g+2}$, using the inductive hypothesis. Having computed $H_{*}\left(\Sigma_{g}^{*}\right)$, one proceeds with the inductive computation of $H_{*}\left(\Sigma_{g+1}\right)$ using the Mayer-Vietoris sequence (1); the vanishing of $H_{1}(A \cap B) \rightarrow H_{1}(A) \oplus H_{1}(B)$ can be checked by constructing inductively 2-chains in A and B whose boundary is a circle homotopy equivalent to $A \cap B$.)
6. For $S^{0}=\{1,-1\}$, set $c_{0}:=1-(-1) \in \Delta_{0}\left(S^{0}\right)$. Then $\left[c_{0}\right]=[1]-[-1]$ generates $\widetilde{H}_{0}\left(S^{0}\right)$. (Recall that $\widetilde{H}_{0}\left(S^{0}\right)$ is the kernel of the canonical map $H_{0}\left(S^{0}\right) \rightarrow H_{0}(\mathrm{pt})$, which maps both generators [-1] and [1] of $H_{0}\left(S^{0}\right)$ to [pt].)
As for S^{1}, consider 1-simplices $c_{1}^{0}, c_{1}^{1}: \Delta_{1} \rightarrow S^{1}$ as indicated in the figure below, and let $c_{1}:=c_{1}^{0}+c_{1}^{1} \in \Delta_{1}\left(S^{1}\right)$, which is a cycle. Consider now the cover of S^{1} by $A=\operatorname{im} c_{1}^{0}$ and $B=\operatorname{im} c_{1}^{1}$ and the reduced Mayer-Vietoris sequence for $\left(S^{1}, A, B\right)$ (which exists despite the fact that the interiors of A and B do not cover S^{1}, by the same reason as in problem 5.2). Then $A \cap B=S^{0}$, and the boundary morphism $\partial_{*}: \widetilde{H}_{1}\left(S^{1}\right) \rightarrow \widetilde{H}_{0}(A \cap B)=\widetilde{H}_{0}\left(S^{0}\right)$ takes $\left[c_{1}\right]$ to $\left[\partial c_{1}^{0}\right]=[1-(-1)]=\left[c_{0}\right]$, our generator of $\widetilde{H}_{0}\left(S^{0}\right)$.

To find a generator of $\widetilde{H}_{2}\left(S^{2}\right)$, view S^{2} as the union of two copies D_{-}and D_{+}of D^{2}, identified along their boundaries. Consider simplices $c_{2}^{0}, c_{2}^{1}, c_{2}^{2}, c_{2}^{3}: \Delta_{2} \rightarrow S^{2}$ as indicated in the figure; note that $c_{2}=c_{2}^{0}+c_{2}^{1}+c_{2}^{2}+c_{2}^{3} \in \Delta_{2}\left(S^{2}\right)$ is a cycle. Consider now the MayerVietoris sequence for $\left(S^{2}, D_{-}, D_{+}\right)$. We have $D_{-} \cap D_{+}=S^{1}$, and the boundary operator $\partial_{*}: H_{2}\left(S^{2}\right) \rightarrow H_{1}\left(D_{-} \cap D_{+}\right)=H_{1}\left(S^{1}\right)$ maps $\left[c_{2}\right]$ to $\left[\partial c_{2}^{0}+\partial c_{2}^{1}\right] \in H_{1}\left(D_{-} \cap D_{+}\right)$, which is precisely $\left[c_{1}^{0}+c_{1}^{1}\right]=\left[c_{1}\right]$.
7. Set $A=X \cup V$ and $B=Y \cup U$, thinking of these as subsets of $X \vee Y$. Then A deformation retracts onto X, B deformation retracts onto Y, and $A \cap B$ deformation retracts onto $\{*\}$, the point at which the two spaces are joint. The reduced Mayer-Vietoris sequence for $(X \vee$ $Y, A, B)$ takes the form

$$
\cdots \rightarrow \widetilde{H}_{k}(\{*\}) \rightarrow \widetilde{H}_{k}(X) \oplus \widetilde{H}_{k}(Y) \rightarrow \widetilde{H}_{k}(X \vee Y) \rightarrow \widetilde{H}_{k-1}(\{*\}) \rightarrow \ldots
$$

which yields $\widetilde{H}_{k}(X \vee Y) \cong \widetilde{H}_{k}(X) \oplus \widetilde{H}_{k}(Y)$ for all k, because $\widetilde{H}_{k}(\{*\})=0$ for all k.

