Homework 6

1. For $1 \le i \le n$ consider the maps

$$\tau_i \colon S^n \longrightarrow S^n$$

 $(x_1, \dots, x_{n+1}) \longmapsto (x_1, \dots, -x_i, \dots, x_{n+1}).$

Show that any two of these maps are homotopic.

- 2. For a space X, denote by \hat{X} its 1-point compactification. Show that if $f: X \to Y$ is a homeomorphism then f induces a homeomorphism $\hat{f}: \hat{X} \to \hat{Y}$ with $\hat{f}(\infty) = \infty$ and $\hat{f}|_{X} = f$. What happens if we drop the assumption that f is a homeomorphism?
- 3. Show that the stereographic projection $\hat{\pi} \colon S^n \to \hat{\mathbb{R}}^n = \mathbb{R}^n \cup \{\infty\}$ is a homeomorphism. Derive a formula for $\hat{\pi}$.
- 4. Construct a nowhere vanishing vector field on the odd-dimensional sphere S^{2k-1} .

Hint: View S^{2k-1} as the unit sphere inside \mathbb{C}^k , with respect to the standard Euclidean metric on \mathbb{C}^k . For every point $z \in S^{2k-1}$, viewed as a k-tuple of complex numbers, consider the curve $\gamma_z : (-\epsilon, \epsilon) \to S^{2k-1}$ given by $\gamma_z(t) = e^{it}z$.

- 5. (a) If $f: S^n \to S^n$ has no fixed points, then $\deg f = (-1)^{n+1}$.
 - (b) Let $f: S^n \to S^n$ be a map of degree 0. Show that there exist points $x,y \in S^n$ such that f(x)=x and f(y)=-y.
- 6. We view S^1 as the unit circle in \mathbb{C} . Show that for each $k \in \mathbb{Z}$ the map $f: S^1 \to S^1$, given by $f(z) = z^k$, has degree k.
- 7. (a) We denote by SX the (unreduced) suspension of a space X we introduced in Exercise 6 Homework 4. If $X = S^n$, then $SX \approx S^{n+1}$. Let $Sf: S^{n+1} \to S^{n+1}$ be the suspension of a map $f: S^n \to S^n$. Show that $\deg Sf = \deg f$.
 - (b) Show that for each $n \geq 1$ and each $k \in \mathbb{Z}$ there is a map $f: S^n \to S^n$ of degree k.
- 8. Construct a surjective map $S^n \to S^n$ of degree 0 for each $n \ge 1$. Hint: Do it first for n = 1 and then use exercise 7(a).
- 9. Consider SO(n) as a subset of \mathbb{R}^{n^2} and endow SO(n) with the induced topology. Show that SO(n) is path connected. Similarly, show that the Lie groups $GL(n, \mathbb{C})$, $GL^+(n, \mathbb{R})$, U(n), SU(n) are path connected.