Solutions to homework 6

1. Let $1 \leq i \neq j \leq n$. Consider the following rotations $R_{t}^{i, j}$ in \mathbb{R}^{n+1} : In the $x_{i}-x_{j}$-plane, $R_{t}^{i, j}$ is represented by the matrix

$$
R_{t}^{i, j}=\left(\begin{array}{cc}
\cos \left(\frac{\pi}{2} t\right) & \sin \left(\frac{\pi}{2} t\right) \\
-\sin \left(\frac{\pi}{2} t\right) & \cos \left(\frac{\pi}{2} t\right)
\end{array}\right)
$$

$R_{t}^{i, j}$ fixes the other coordinates $x_{k}, k \neq i, j$. Then $R_{t}^{i, j}$ restrict to homeomorphisms on S^{n} and $\tau_{i}=\left(R_{1}^{i, j}\right)^{-1} \circ \tau_{j} \circ R_{1}^{i, j}$. Thus $\left\{\left(R_{t}^{i, j}\right)^{-1} \circ \tau_{j} \circ R_{t}^{i, j}\right\}_{t \in[0,1]}$ is a homotopy from τ_{j} to τ_{i}.
2. We show that \hat{f} is continuous: Let $V \subset \hat{Y}$ be an open subset. If $V \subset Y$ is open, then $\hat{f}^{-1}(V)=f^{-1}(V) \subset X$ is open in X by continuity of f. Thus $\hat{f}^{-1}(V)$ is open in \hat{X}. If $\infty \in V$, then $\infty \in \hat{f}^{-1}(V)$ and $\hat{X} \backslash \hat{f}^{-1}(V)=f^{-1}(\hat{Y} \backslash V)$. Note that $\hat{Y} \backslash V \subset Y$ is compact. Since f is a homeomorphism, f is proper and so $f^{-1}(\hat{Y} \backslash V)$ is compact. It follows that $\hat{f}^{-1}(V)$ is open in \hat{X}. The same argument applied to f^{-1} implies that $\widehat{f^{-1}}$ is continuous. Thus \hat{f} is a homeomorphism with inverse $\widehat{f^{-1}}$.
Dropping the assumption that f is a homeomorphism is not possible: Consider the inclusion i of the 1 -disk $B_{1}(0)$ into the 2 -disk $B_{2}(0)$. Then there is no continuous extension of i to the compactifications. (The complement of $\overline{B_{1}(0)} \subset \widehat{B_{2}(0)}$ is an open neighbourhood of ∞ and its inverse image $\{\infty\} \in \widehat{B_{1}(0)}$ is not open.)
Proper continuous maps can be extended to continuous maps on the compactifications. See also Bredon, Theorem 11.4.
3. View S^{n} as the standard sphere in \mathbb{R}^{n+1} with coordinates $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$. Define the stereographic projection $\pi: S^{n} \backslash\{(1,0, \ldots, 0)\} \rightarrow \mathbb{R}^{n}$ as follows:

$$
\pi\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(\frac{x_{1}}{1-x_{0}}, \ldots, \frac{x_{n}}{1-x_{0}}\right)
$$

$\pi(x)$ is the intersection of the unique line trough x and $(1,0 \ldots, 0)$ with the hyperplane $\left\{x_{0}=0\right\} . \pi$ is a homeomorphism with inverse

$$
\pi^{-1}\left(y_{1}, \ldots, y_{n}\right)=\left(\frac{\|y\|^{2}-1}{\|y\|^{2}+1}, \frac{2 y_{1}}{\|y\|^{2}+1}, \ldots, \frac{2 y_{n}}{\|y\|^{2}+1}\right)
$$

It follows from Exercise 3 that π extends to a homeomorphism $\widehat{\pi}: S^{n} \rightarrow \mathbb{R}^{n} \cup\{\infty\}$.
4. View $S^{2 k-1}$ as the unit sphere inside \mathbb{C}^{k}, with respect to the standard Euclidean metric on \mathbb{C}^{k}. For every point $z \in S^{2 k-1}$, viewed as a k-tuple of complex numbers, consider the curve $\gamma_{z}:(-\epsilon, \epsilon) \rightarrow S^{2 k-1}$ given by $\gamma_{z}(t)=e^{i t} z$. Consider the vector field X on $S^{2 k-1}$ given by

$$
X(z)=\dot{\gamma}_{z}(0)
$$

This is a smooth nonwhere vanishing vector field. In real coordinates it is given by

$$
X\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)=\left(-y_{1}, x_{1}, \ldots,-y_{k}, x_{k}\right)
$$

5. (a) Since $f(x) \neq x, \forall x \in S^{n}$, the line segment $(1-t) f(x)-t x, t \in[0,1]$, does not pass through 0 . Therefore, if f has no fixed points,

$$
f_{t}(x):=\frac{(1-t) f(x)-t x}{|(1-t) f(x)-t x|}
$$

is a well defined homotopy from f to the antipodal map $-i d$ which has degree $\operatorname{deg}(-i d)=$ $(-1)^{n+1}$. Thus $\operatorname{deg} f=(-1)^{n+1}$.
(b) Since $\operatorname{deg} f=0 \neq(-1)^{n+1}$ it must have a fixed point $x \in S^{n}$ by exercise 6.(a), i.e. $f(x)=x$. Similarly, since $g:=(-i d) \circ f$ has degree $\operatorname{deg} g=\operatorname{deg}(-i d) \cdot \operatorname{deg} f=0$, there is a fixed point $y \in S^{n}$ of g, i.e. $g(y)=-f(y)=y$. This means that $f(y)=-y$.
6. See example 2.32 on page 137 in Hatcher's book.
7. (a) Recall from Exercise 6 in Homework 4 that we have the following commutative diagram

Therefore, if f_{*} is multiplication by $d=\operatorname{deg} f$, then $(S f)_{*}$ is also multiplication by d and hence $\operatorname{deg} f=\operatorname{deg} S f$.
(b) Given $k \in \mathbb{Z}$ the map $S^{1} \rightarrow S^{1}: z \mapsto z^{k}$ has degree k. Now assume that we have constructed a map $f: S^{n} \rightarrow S^{n}$ of degree k, then (by exercise 7.(a)), the map $S f$: $S^{n+1} \rightarrow S^{n+1}$ has degree k as well. So the claim follows by induction.
8. First, let $n=1$ and denote $I:=[0,1]$. Let $g: I \rightarrow \mathbb{R}$ be a continuous map such that $g(0)=g(1)=0$ and $g(1 / 2)=2 \pi$. The map g induces a well defined continuous surjection $f: I / \partial I=S^{1} \rightarrow S^{1}: t \mapsto e^{i g(t)}$. By the path lifting property the map g is the unique lift of f to the universal cover \mathbb{R} of S^{1} starting at the point $0 \in \mathbb{R}$. So $f \in p_{\sharp} \underbrace{\pi_{1}(\mathbb{R}, 0)}_{=0} \subset \pi_{1}\left(S^{1}, 1\right)$ is homotopic to a constant map (which is clearly not surjective and therefore has degree 0) and hence $\operatorname{deg} f=0$. Here, $p: \mathbb{R} \rightarrow S^{1}$ is the universal cover.
Using exercise 8.(a) we obtain, by repeatedly suspending the map f, a surjective map $S^{n} \rightarrow$ S^{n} of degree 0 .

For an alternative, more explicit, solution see example 2.31 in Hatcher's book.
9. For $n=2$ we have that $S O(2)$ is homeomorphic to the circle S^{1} which is path connected. Proceeding by induction we assume that $S O(n-1)$ is path connected. Given any $A \in S O(n)$ it is enough to show that there is a path in $S O(n)$ connecting A to the identity matrix I_{n}. This means that we need to find a continuous path taking the standard basis e_{1}, \ldots, e_{n} to their image $A e_{1}, \ldots, A e_{n}$. Let $\Lambda \subset \mathbb{R}^{n}$ be a plane containig both e_{1} and $A e_{1}$. By the path connectedness of $S O(2)$, we can continuously move e_{1} to $A e_{1}$ by a rotation R of the plane Λ.

It remains to continuously move $R e_{2}, \ldots, R e_{n}$ to $A e_{2}, \ldots, A e_{n}$ while keeping $A e_{1}$ fixed. Notice that $A e_{1}=R e_{1} \perp R e_{i}$ and $A e_{1} \perp A e_{i}$ for each $2 \leq i \leq n$ since both R and A preserve angles. Hence the required motion can take place in the hyperplane \mathbb{R}^{n-1} of vectors orthogonal to $A e_{1}$, where it exists by the assumption that $S O(n-1)$ is path connected.
Concatenating the two motions gives a path in $S O(n)$ from I_{n} to A and thus $S O(n)$ is path connected.
For the other groups, take a look at
https://www.jnu.ac.in/Faculty/vedgupta/matrix-gps-gupta-mishra.pdf

