Solutions to Homework 7

1. (a) The map

$$
\begin{aligned}
g_{n}: \mathbb{R}^{n+1} \backslash\{0\} & \longrightarrow S^{n} \\
\underline{x} & \longmapsto \frac{\underline{x}}{\|\underline{x}\|}
\end{aligned}
$$

descends to a homeomorphism $\mathbb{R} P^{n} \rightarrow S^{n} /(\underline{x} \sim-\underline{x})$. The map

$$
\begin{aligned}
f_{n}: B^{n} & \longrightarrow \mathbb{R} P^{n} \\
x=\left(x_{1}, \ldots, x_{n}\right) & \longmapsto\left[x_{1}, \ldots, x_{n}, \sqrt{1-|x|^{2}}\right]
\end{aligned}
$$

descends to a homeomorphism $\left(B^{n} / \sim\right) \rightarrow \mathbb{R} P^{n}$, where $x \sim y$ in B^{n} if and only if $x=-y \in \partial B^{n}$.
(b) $\mathbb{R} P^{0}$ is a point and so it's a CW-complex with one 0 -cell. View $\mathbb{R} P^{n}$ as B^{n} / \sim. As such, $\mathbb{R} P^{n}$ can be obtained as a 2 -cell B^{n} glued to $\partial B^{n} /(x \sim-x)$ along the boundary via the projection $\partial B^{n} \rightarrow \partial B^{n} /(x \sim-x)$. Note that

$$
\partial B^{n} /(x \sim-x) \approx S^{n-1} /(\underline{x} \sim-\underline{x}) \approx \mathbb{R} P^{n-1}
$$

Hence $\mathbb{R} P^{n}$ is obtained by gluing precisely one n-cell to $\mathbb{R} P^{n-1}$. This provides CWstructures as claimed by proceeding inductivly over

$$
\mathbb{R} P^{0} \subset \mathbb{R} P^{0} \cup B^{1} \approx \mathbb{R} P^{1} \subset \mathbb{R} P^{1} \cup B^{2} \approx \mathbb{R} P^{2} \subset \ldots
$$

The characteristic map for the k-cell a_{k} is $f_{a_{k}}:=f_{k}: B^{k} \rightarrow \mathbb{R} P^{k} \subset \mathbb{R} P^{n}$. Note that $f_{a_{k}}$ is an embedding on $\operatorname{Int}\left(B^{k}\right)$. Moreover, $f_{a_{k}}\left(\partial B^{k}\right)=\left\{\left[x_{1}, \ldots, x_{k}, 0\right] \in \mathbb{R} P^{k}\right\} \approx$ $\mathbb{R} P^{k-1} \subset \mathbb{R} P^{n}$. The attaching map is its restriction to ∂B^{k} :

$$
f_{\partial a_{k}}: \partial B^{k} \approx S^{k-1} \longrightarrow \mathbb{R} P^{k-1} \subset \mathbb{R} P^{n}
$$

(c) The cellular chain complex of $\mathbb{R} P^{n}$ has one copy of \mathbb{Z} in each degree $0 \leq k \leq n$ and is 0 in all the other degrees. For the k-cell a_{k} consider the projection

$$
p_{a_{k}}: \mathbb{R} P^{k} \approx\left(B^{k} / \sim\right) \rightarrow\left(B^{k} / \partial B^{k}\right) \approx S^{k}
$$

The differential $d_{k}: \mathbb{Z} \longrightarrow \mathbb{Z}$ in degree $1 \leq k \leq n$ is given by multiplication with the degree of the map $p_{a_{k-1}} f_{\partial a_{k}}: S^{k-1} \rightarrow S^{k-1}, 1 \leq k \leq n .[0] \in B^{k-1} / \partial B^{k-1} \approx S^{k-1}$ has two preimages under $p_{a_{k-1}} f_{\partial a_{k}}: N=(0, \ldots, 0,1) \in S^{n-1}$ and $S=(0, \ldots, 0,-1) \in$ S^{n-1}. Near N, this map is an orientation-preserving homeomorphism. So the local degree at N is 1 . Near S, it is the antipodal map composed with an orientationpreserving homeomorphism. So the local degree near S is $(-1)^{k}$. Therefore,

$$
\operatorname{deg}\left(p_{a_{k-1}} f_{\partial a_{k}}\right)=1+(-1)^{k}= \begin{cases}0, & k \text { odd } \\ 2, & k \text { even }\end{cases}
$$

Suppose n is even. Then the cellular chain complex is

$$
0 \rightarrow \mathbb{Z} \xrightarrow{* 2} \mathbb{Z} \xrightarrow{0} \ldots \mathbb{Z} \xrightarrow{* 2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \rightarrow 0
$$

with non-zero groups exactly in degrees $0, \ldots, n$, and thus we obtain

$$
H_{k}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z}, & k=0 \\ \mathbb{Z} / 2 \mathbb{Z}, & k=1,3, \ldots, n-1 \\ 0 & \text { otherwise }\end{cases}
$$

For n being odd, one computes similarly

$$
H_{k}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z}, & k=0, n \\ \mathbb{Z} / 2 \mathbb{Z}, & k=1,3 \ldots, n-2 \\ 0 & \text { otherwise }\end{cases}
$$

An alternative solution can be found in Bredon, Chapter IV. 14.
2. Compactify \mathbb{R}^{2} and consider the stereographic projection

$$
\pi: S^{2} \rightarrow \mathbb{R}^{2} \cup\{\infty\}
$$

View the graph G in S^{2} by considering $\tilde{G}:=\pi^{-1}(G) \subset S^{2} . \tilde{G}$ defines a CW-structure on S^{2} with one 0-cell for each vertex of G, one 1-cell for each edge of G and one 2-cell for each face of G.

The Euler characteristic of S^{2} therefore is $\xi\left(S^{2}\right)=v-e+f$. On the other hand, $\xi\left(S^{2}\right)=2$, as can been seen from singular homology. We conclude: $v-e+f=2$.
3. We view $T^{3}=I^{3} / \sim$ as the quotient space of the cube I^{3} under the relation that identifies opposite faces of the boundary. From this description, one sees that T^{3} has a CW complex structure with one 0 -cell a (any of the corner points-note that these get identified under $I^{3} \rightarrow T^{3}$), three 1-cells b_{1}, b_{2}, b_{3} (the line segments on the coordinate axes), three 2-cells c_{1}, c_{2}, c_{3} (the squares in the coordinate planes), and one 3 -cell d (all of I^{3}); in all these cases the attaching maps is given by restriction of the quotient map $I^{3} \rightarrow T^{3}$.
The corresponding cellular chain complex is

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\partial_{3}} \mathbb{Z}^{3} \xrightarrow{\partial_{2}} \mathbb{Z}^{3} \xrightarrow{\partial_{1}} \mathbb{Z} \rightarrow 0
$$

with linear maps ∂_{i} which we now compute. We have $\partial_{1}=0$ since the attaching maps $f_{b_{i}}: I \rightarrow\left(T^{3}\right)^{(0)}=\{a\}$ take both boundary points $0,1 \in I$ to the same point (cf. the remark in Bredon after Theorem 10.3). We also have $\partial_{2}=0$, since all maps $p_{b_{i}} f_{\partial c_{j}}: \partial I^{2} \rightarrow S^{1}$ have degree 0 (by the same argument as for the standard CW complex structure of the 2-torus; see Bredon example 10.5).

As for ∂_{3}, consider any of the maps $p_{c_{i}} f_{\partial d}: \partial I^{3} \rightarrow S^{2}$. Note that there are two opposite faces of ∂I^{3} in whose interiors this map restricts to a homeomorphism, and that the map collapes the rest of ∂I^{3} to a point in S^{2}. The degree of $p_{c_{i}} f_{\partial d}$ is hence the sum of the two local degrees at any two points q, q^{\prime} in the two first-mentioned faces which get mapped to the same point in T^{3}. Now note that the restrictions of $p_{c_{i}} f_{\partial d}$ to these faces are obtained from one another by precomposing with an orientation-reversing map (for orientations induced from an orientation of ∂I^{3}); therefore the sum of these local degrees vanishes. It follows that also $\partial_{3}=0$.
Summing up, we obtain

$$
H_{i}\left(T^{3}\right) \cong \begin{cases}\mathbb{Z}, & i=0,3 \\ \mathbb{Z}^{3}, & i=1,2\end{cases}
$$

4. (a) One possible CW complex structure has two 0-cells a_{1}, a_{2} (the north and south poles), two 1 -cells b_{1}, b_{2} (the line segment mentioned in the description of X and another segment on the sphere connecting the poles), and one 2-cell c. We then have

$$
\operatorname{deg}\left(p_{a_{2}} f_{\partial b_{j}}\right)=1, \quad \operatorname{deg}\left(p_{a_{1}} f_{\partial b_{j}}\right)=-1
$$

for $j=1,2$, supposing that the attaching maps $f_{b_{j}}: I \rightarrow X^{(0)}$ are such that both map $0 \in \partial I$ to a_{1} and $1 \in \partial I$ to a_{2} (cf. the remark in Bredon after Theorem 10.3). Moreover, we have

$$
\operatorname{deg}\left(p_{b_{j}} f_{\partial c}\right)=0
$$

for $j=1,2$, as both maps $p_{b_{j}} f_{\partial c}$ are null-homotopic. The cellular chain complex is therefore

$$
0 \rightarrow \mathbb{Z} \xrightarrow{0} \mathbb{Z}^{2} \xrightarrow{\partial_{1}} \mathbb{Z}^{2} \rightarrow 0, \quad \partial_{1}=\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right): \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}
$$

Both the kernel and the cokernel of ∂_{1} are 1-dimensional, and therefore

$$
H_{k}(X) \cong \begin{cases}\mathbb{Z}, & k=0,1,2 \\ 0 & \text { otherwise }\end{cases}
$$

(Note that there is an even simpler CW complex structure for X with exactly one k-cell for $k=0,1,2$.)
(b) $X \simeq S^{2} \vee S^{1}$ implies $\widetilde{H}_{*}(X)=\widetilde{H}_{*}\left(S^{2} \vee S^{1}\right) \cong \widetilde{H}_{*}\left(S^{2}\right) \oplus \widetilde{H}_{*}\left(S^{1}\right)$; hence $\widetilde{H}_{2}(X)=$ $\widetilde{H}_{1}(X)=\mathbb{Z}$ and $\widetilde{H}_{0}(X)=0$, from which the result above follows by the definition of reduced homology.
Alternatively: Excising a neighbourhood of the point joining the two spheres yields $\widetilde{H}_{*}(X) \cong H_{*}\left(D^{2}, \partial D^{2}\right) \oplus H_{*}(I, \partial I)$ from which the result above again follows easily.
5. We assume wlog that p and q are coprime (otherwise divide by their greatest common divisor), which implies that there exist integers a, b such that $a p-b q=1$. Hence the matrix

$$
\Psi=\left(\begin{array}{ll}
a & q \\
b & p
\end{array}\right)
$$

lies in $S L(2, \mathbb{Z})$ and therefore induces a homeomorphism $\psi: T^{2} \rightarrow T^{2}$ of $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. Note that $\Psi^{-1} \in S L(2, \mathbb{Z})$ takes the line given by $p x=q y$ to the line given by $x=0$, because Ψ takes $(0,1)$ to (q, p) (and these vectors generate the two lines). Therefore ψ^{-1} takes C to the curve C^{\prime} that's the image of $x=0$ under $\mathbb{R}^{2} \rightarrow T^{2}$ and which is the 1-cell of the standard CW complex structure on T^{2}. Thus T^{2} / C has a CW complex structure with one cell a_{k} in dimensions $k=0,1,2$, and the corresponding cellular differential vanishes (by the same reasons as for T^{2}). Therefore

$$
H_{k}\left(T^{2} / C\right) \cong \begin{cases}\mathbb{Z}, & k=0,1,2 \\ 0 & \text { otherwise }\end{cases}
$$

6. As discussed in class, $\mathbb{R} P^{n}$ has a CW complex structure with exactly one k-cell for every $k=0, \ldots, n$. Therefore $\mathbb{R} P^{n} / \mathbb{R} P^{m}$ has a CW complex structure with one 0 -cell a_{0} and one k-cell a_{k} for every $k=m+1, \ldots, n$. As in the case $\mathbb{R} P^{n}$, we have

$$
\operatorname{deg}\left(p_{a_{k-1}} f_{\partial a_{k}}\right)=1+(-1)^{k} \begin{cases}0, & k \text { odd } \\ 2, & k \text { even }\end{cases}
$$

Thus the cellular chain complex $C_{*}\left(\mathbb{R} P^{n} / \mathbb{R} P^{m}\right)$ has one copy of \mathbb{Z} in degrees $k=0$ and $k=$ $m+1, \ldots, n$, and the cellular differential $C_{k}\left(\mathbb{R} P^{n} / \mathbb{R} P^{m}\right) \rightarrow C_{k-1}\left(\mathbb{R} P^{n} / \mathbb{R} P^{m}\right)$ is $1+(-1)^{k}$ for all $k=m+2, \ldots, n$ and vanishes in all other cases. The homology is therefore

$$
H_{k}\left(\mathbb{R} P^{n} / \mathbb{R} P^{m}\right) \cong \begin{cases}\mathbb{Z}, & k=0 \\ \mathbb{Z}, & k=m+1(\text { if } m+1 \text { is even }) \\ \mathbb{Z}, & k=n(\text { if } n \text { is odd }) \\ \mathbb{Z}_{2}, & m+1 \leq k<n \text { and } k \text { odd } \\ 0, & \text { otherwise }\end{cases}
$$

