Homework 7

1. Recall that $\mathbb{R} P^{n}=\left(\mathbb{R}^{n+1} \backslash\{0\}\right) / \sim$, where $\underline{x} \sim \lambda \underline{x}$ for all $0 \neq \lambda \in \mathbb{R}$.
(a) Find explicit homeomorphisms between $\mathbb{R} P^{n}$ and the following two spaces: S^{n} / \sim, where $x \sim-x$ for all $x \in S^{n}, B^{n} / \sim$, where $x \sim-x$ for all $x \in \partial B^{n}$.
(b) Endow $\mathbb{R} P^{n}$ with the structure of a CW-complex with precisely one k-cell in each dimension $0 \leq k \leq n$ and no cells in dimension higher than n.
(c) Calculate the cellular homology of $\mathbb{R} P^{n}$.
2. Let $G \subset \mathbb{R}^{2}$ be a finite connected planar graph with v vertices, e edges and f faces. (A face is a region in \mathbb{R}^{2} that is bounded by edges. The infinitely large region outside of the graph is also a face, called the outer face.) Prove the Euler formula:

$$
v-e+f=2
$$

Hint: Check out the definition of the Euler Characteristic in Hatcher's AT, page 146.
3. The 3 -torus is the quotient space $T^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3} \approx S^{1} \times S^{1} \times S^{1}$. Find a CW-structure on T^{3} and use it to compute homology groups $H_{p}\left(T^{3}\right)$ for all p.
4. Consider the space X which is the union of the unit sphere $S^{2} \subset \mathbb{R}^{3}$ and the line segment between the north and south poles.
(a) Give X a CW-structure and use it to compute $H_{p}(X)$ for all p.
(b) Use that X is homotopy equivalent to $S^{2} \vee S^{1}$ to give an easier computation of $H_{p}(X)$ for all p.
5. Let C be the circle on the torus $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ which is the image, under the covering map $\mathbb{R}^{2} \rightarrow T^{2}$, of the line $p x=q y$. Define $X=T^{2} / C$, the quotient space obtained by identifying C to a point. Compute $H_{p}(X)$ for all p.
6. Compute $H_{p}\left(\mathbb{R} P^{n} / \mathbb{R} P^{m}\right)$ for $m<n$, using cellular homology and equipping $\mathbb{R} P^{n}$ with the standard CW-structure with $\mathbb{R} P^{m}$ as its m-skeleton.

