We need two more definitions from homological algebra in order to define relative homology groups.

Definition Let $D=(D_{0,2}^{D})$ be a chain complex. A chain complex E-1 Co, 2°?) is a CHAIN SUBCOMPLEX 7 CpCDp Xp and If 2^c=3^p/C. Definition If CCD is a subcomplex, then we can define the QUOTIENT COMPLEX Maps induced on guokents \mathcal{D}_{φ} 202 = O since the boundary maps are

induced by the boundary maps of D.

RELATIVE HOMOLOGY

Let X be a space and ACX a subspace. We denote by $G_n(A)$, $G_n(x)$ the chain complexes of singular chains in A, and in X. $G_n(A) \subset G_n(x)$ is a subcomplex. Denote by $i: C_n(A) \to G_n(x)$ the inclusion. This is a chain map.

Let $C_{n}(X, A) := C_{n}(X)$ $S_{p}(x,A) = S_{p}(x)$ group of $S_{p}(x,A) = S_{p}(x)$ group of $S_{p}(A)$ group of p-chains where So, Cn (X, A) is $\frac{1}{3} \frac{1}{3} \frac{1}$

The homology groups of this chain complex
are called RELATIVE HOMOLOGY GROUPS.
Intuition:
The elements of
$$H_p(X,A)$$
 are represented in the elements of
 $H_p(X,A)$ are represented in the represented by an
by RELATIVE CICLES $x \in S_p(X,A)$.
A relative cycle can be represented by an
n-chain $\overline{C} \in S_p(X)$ with $j(\overline{C}) = C$
such that $\partial \overline{C} \in S_{p1}(A)$
A relative cycle c is trivial in
 $H_p(X,A)$ iff it is a RELATIVE BOUNDARY
 $C = \partial b + a$ for some $b \in S_{p+1}(X)$
and $a \in S_p(A)$.
There properties make precise the intuitive
idea that $H_p(X,A)$ is 'homology
of X modulo A '.

We have the following SES of chain complexes: $0 \rightarrow C_n(A) \xrightarrow{\mathcal{N}} C_n(X) \xrightarrow{\mathcal{T}} C_n(X_{\mathcal{N}}) \xrightarrow{\mathcal{T}} 0.$ this SES of chain complexes induces a LES in homology $- \xrightarrow{\partial x} H_p(A) \xrightarrow{\lambda_x} H_p(x) \xrightarrow{\gamma_x} H_p(x, A) \xrightarrow{\partial x} H_{p'}(A) \xrightarrow{\lambda_x} H_{p'}(A) \xrightarrow{\gamma_x} H$ The connecting homomorphisma has a simple description. $\partial_{\mathbf{x}} : \mathcal{H}_{\mathbf{p}}(\mathbf{X}, \mathbf{A}) \longrightarrow \mathcal{H}_{\mathbf{p}}(\mathbf{A})$ $0 \rightarrow S_{p}(A) \xrightarrow{i} S_{p}(X) \xrightarrow{i} S_{p}(XA) \rightarrow 0$ $0 \xrightarrow{\delta_{l}} S_{l} \xrightarrow{\delta_{l}} \xrightarrow{$

Exactness implies that if Hp(X,A)=0 for all p, then the inclusion A > X inducés isomorphisms $H_p(x) \approx H_p(A) \forall P$. So we can think of Hp(x,A) as measuring the difference between the groups Hp(x) and Hp(A). There is an analogous LES of reduced homology groups for a pair (X,A) with A = \$\$, this comer from applying the LES

theorem to $0 \rightarrow C_n(A) \rightarrow C_n(X) \rightarrow C_n(XA) \rightarrow 0$ In non-negative dimensions, augmented by the SES $0 \rightarrow \mathbb{Z} \xrightarrow{10} \mathbb{Z} \rightarrow 0 \rightarrow 0$. in dimension -1. Example LES for (X,Xo), where X & Yreldo $H_p(x_0) \to H_p(x) \to H_p(x_0) \to$ $S = H_p(x,x_0) \cong H_p(x)$ for all p. Soon, we will prove the following theorem: THEOREM If X is a space and A is a non-empty closed subspace that is a deformation retract of some neighborhood in X, there is

an exact seguence $\rightarrow H_p(A) \stackrel{i}{\rightarrow} H_p(X) \stackrel{i}{\rightarrow} H$ $\rightarrow H_{p_1}(A) \xrightarrow{i_*} H_{p_{-1}}(X) \xrightarrow{j_*} H_{p_1}(X) \xrightarrow{j_*} \dots$ where i is the inclusion $A \rightarrow X$ and j is the guotient map $X \rightarrow X_A$. EXAMPLE $\widetilde{H}_{p}(S^{n}) \cong \mathbb{Z}$ and $\widetilde{H}_{p}(S^{n}) = 0$ for $i \neq n$, For n>0 let $(x,A) = (D^n, S^{n-i})$. $\sum_{S^{\circ}} J' S^{\circ}$ N = 1 $\int S^{1} D^{2}/S^{1}$ N=2

For a general
$$n$$
, $D_{S^{n-1}}^{n} \approx S^{n}$.
the LES for homology for (D_{1}, S^{n-1})
 $\downarrow_{S^{n-1}}$ $\stackrel{\sim}{\to} H_{p}(D^{n}) \xrightarrow{\to} H_{p}(S^{n}) \xrightarrow{\cong} H_{p-1}(S^{n-1})$
 $\stackrel{\sim}{\to} H_{p}(D^{n}) \xrightarrow{\to} H_{p-1}(S^{n}) \xrightarrow{\to} H_{p}(D) \xrightarrow{\to} H_{p}(S^{n}) \xrightarrow{\to} H_{p}(S^{n})$

that
$$H_{\mu}(x) \stackrel{\sim}{=} \bigoplus H_{\mu}(x_{d})$$
, where
 $d \in A$.
 X_{x} for $d \in A$ are the path-connected
Components of X. So
 $H_{\mu}(s^{\circ}) = H_{\mu}(\bullet, \bullet) \stackrel{\sim}{=} H_{\mu}(\bullet) \oplus H_{\mu}(\bullet)$
 $\Rightarrow H_{\mu}(s^{\circ}) = \begin{cases} Z \oplus Z \\ 0 \end{cases} \stackrel{p=0}{\text{otherwise}}$
 $\Rightarrow H_{\mu}(s^{\circ}) = \begin{cases} Z \oplus Z \\ 0 \end{cases} \stackrel{p=0}{\text{otherwise}}$
 $\Rightarrow H_{\mu}(s^{\circ}) = \begin{cases} Z \oplus Z \\ 0 \end{cases} \stackrel{p=0}{\text{otherwise}}$
Now we use \bigotimes to get $H_{\mu}(s^{\circ}) \stackrel{\sim}{=} H_{\mu-1}(s^{\circ})$
for $p > 1$ (from before we know that $H_{\nu}(s^{\circ}) = 0$).
 $H_{\mu}(s^{\circ}) = \begin{cases} Z \\ 0 \end{cases} \stackrel{p=1}{\text{otherwise}}$
By induction it follows that $H_{\mu}(s^{\circ}) = \begin{cases} Z \\ 0 \end{cases} \stackrel{p=1}{\text{otherwise}}$

PROPOSITION

If two maps $f_{ig}: (x, A) \rightarrow [I]_{B}$ are homotopic through maps of pairs $(x, A) \rightarrow (I, B)$, then

$$f_{x} = g_{x} : H_{n}(xA) \rightarrow H_{n}(YB).$$

Proof
Exercise (proof in Hatcher on
page 118).

Finally, consider BCACX. We have a SES of chain complexes $O \rightarrow C_n(A,B) \rightarrow C_n(X,B) \rightarrow C_n(X,A) \rightarrow O$.

This sequence induces a LES

 $-H_n(A,B) \rightarrow H_n(X,B) \rightarrow H_n(X,A) \rightarrow$ $\rightarrow \mathcal{H}_{n-1}(A_{\beta}B) \rightarrow \cdots$

SPLIT EXACT SEQUENCES Let 0->A is B is c->D be a SES of abelian groups. Definition the sequence is called SPLIT if J an isomorphism $T: B \xrightarrow{\simeq} A \oplus C \quad s.t.$ the following diagram commutes $0 \rightarrow A \xrightarrow{\sim} B \xrightarrow{\sim} C \rightarrow 0$ lid the lid $() \rightarrow A \xrightarrow{}_{L_{A}} A \oplus C \xrightarrow{}_{\eta_{c}} C \rightarrow 0$ where $i_A(a):=(a, o)$ and $\mathcal{T}_C(a, c):=C$.

Proposition
To say that the SES
$$0 \rightarrow A \xrightarrow{i} B \xrightarrow{i} C \rightarrow 0$$

is replit is equivalent to any of
the following three statements
(1) $\exists a$ homomorphism $C:B \rightarrow B$
with $c = c$, s.t. Kicc = imi.
(2) $\exists a$ homomorphism $C \xrightarrow{i} B$
s.t. jo $S = ud_{c}$ $0 \rightarrow A \rightarrow B \xrightarrow{i} C \rightarrow 0$
(s is a right inverse to j)
(3) $\exists a$ left inverse to i, ic.
a homomorphism $u: B \rightarrow A$ with $u = id_{A}$
 $0 \rightarrow A \xrightarrow{i} B \rightarrow C \rightarrow 0$
N

Exercise: check that eoe=e and kere=imi.

(D=) split
Note that
$$b - e(b) \in Im i$$
:
 $e(b-e(b)) = e(b) - e \circ e(b) =$
 $= e(b) - e(b) = 0$
 $= b - e(b) \in kare = Im(i).$
Define $-t(b) := (a, j(b))$, where $a \in A$
is the unique element with

ila=b-elb).

Exercise: Check that I is a homomorphism and that it makes the diagram in

the definition commutative (2) = (1) Put $e(b) := s \circ j(b)$. Split = (2) Put $s(c) := t^{-1} \circ i_c(c)$. (3) $\neq 71/split$ Exercise

Example

 $0 \rightarrow \mathbb{Z} \xrightarrow{x_{2}} \mathbb{Z} \xrightarrow{y} \mathbb{Z}/_{2\mathbb{Z}} \xrightarrow{y} 0$ is a non-split SES, because Z is not isomorphic to ZOZ (Alternatively, # Z ~ 427 right

moerse to j because s must be 0.) **PROPOSITION** Let D-A 1-3 B 1-5 C +0 be a SES of abelian groups. If C is a free abelian, then the sequence

Splits.

Proof Let l'Calder be a basis for C.

C:C-B as follows: Define $\forall x \in T$ pick $b_x \in j^{-1}(C_x) \subset B$. r not empty since j is surjecture Define $S(C_{\lambda}) := b_{\lambda}$. Now extend linearly to s: C->B. Clearly, jos=ide

Let A, B, C be chain complexes, and $0 \rightarrow A, \stackrel{i}{\rightarrow} B, \stackrel{a}{\rightarrow} C, \rightarrow 0$ be a SES of Chain complexes. The sequence is called SPLIT (in the sense of chain complexes) if Fa CHAIN MAP $s: E \rightarrow B$ with $\tilde{J} \circ S = id_E$.

I a splitting t with t being a chain map ZI J 4 left inverse of i with u = chain map. IF A. C. are chain complexes we can define A. € C., where $(A, \oplus C)_{\rho} = A_{\rho} \oplus C_{\rho}$ and the boundary operator is $\mathfrak{I} := \mathfrak{I}_{\mathfrak{P}} \oplus \mathfrak{I}_{\mathfrak{B}}$ Note that $H_{p}(A, \oplus E) \cong H_{p}(A,) \oplus H_{p}(E)$ because $Z_p(A, \oplus C) = Z_p(A) \oplus Z_p(C)$ $B_{p}(A, \oplus C) = B_{p}(A,) \oplus B_{p}(C).$ $0 \rightarrow A_{\bullet} \rightarrow B_{\bullet} \rightarrow C_{\bullet} \rightarrow 0$ is a split 17

SES of complexes, then

 $M_{p}(B_{\bullet}) \cong M_{p}(A_{\bullet}) \oplus M_{p}(C_{\bullet}) \forall p$

Remark Sometimes O > Ap > Bp > Cp > O splits for all p as a septence of abelian groups, but Not as a sepuence of chain complexes. Example X = space, A = subspace $0 \rightarrow C_{n}(A) \xrightarrow{i} C_{n}(x) \xrightarrow{i} C_{n}(x, A) \rightarrow 0$ Claim: 4p, Sp(XA) is free abelian. A basis for this group: consider €G: ΔP→X: G(Δ)¢AJ =: g and Zj(G) Jzeg. This family freely generates Sp(X,A).

So, Yp, the sequence $0 \rightarrow S_{\rho}(A) \rightarrow S_{\rho}(X) \rightarrow S_{\rho}(X|A) \rightarrow 0$ splits as a sequence of abelian groups, but usually NOT as chair complexer since usually this replitting is not a chain map. Usually Hp(x) 7 Hp(A) + Hp(x,A) EXAMPLE Brouwer fixed point theorem Every continuous map h: Dn Dn has a fixed point, that is, a point $x \in D^{n}$ with h(x) = xSuppose that $h(x) \neq X \forall X \in D^n$ (proof by contradiction).

then we can define $r: D^n \rightarrow S^{n-1}$ by letting r(x) be the point of Sh-1 where the vay in Rh starting at h(x) and passing through X leaves \mathbb{D}^n , This map is continuous a retraction. For $A = S^{n-1}$, $X = D^n$ such an $M: X \to A$ gives a splitting $H_{p}(D^{n}) \cong H_{p}(S^{n-1}) \oplus H_{p}(D^{n}, S^{n-1})$ However, for p=n-1 $\mathcal{H}_{n-1}\left(\mathbb{D}^{n}\right)=0,$ whereas $H_{n-1}(S^{n-1}) \cong Z^2$, which is not possible