ExCision
A fundamental property of relative homology groups is given by the following EXCISION THEOREM, describing when the relative groups $H_{n}(x, A)$ are unaffected by excising/deleting a subset $Z \subset A$.
THEOREM (EXCISION)
Given subspaces $Z \subset A C X$ such that the closure of Z is contained in the interior of A, then the inclusion $(x-z, A-z) \hookrightarrow(x, A)$ unduces isomorphisms $H_{p}(x-Z, A-Z) \rightarrow H_{p}(x, A)$ for all p Equivalently, for subspaces $A, B C X$ whose interior covers X, the inclusion $(B, A \cap B) \hookrightarrow(X, A)$ induces isomorphisms
$H_{p}(B, A \cap B) \rightarrow H_{p}(X, A)$ for ah p.
The translation between the two versions is obtained
 by setting

$$
B=x-Z \& Z=x-B
$$

then $A \cap B=A-Z$ and the condition $\bar{Z} \subset \AA$ is equivalent to

$$
x=\AA \cup \dot{B} \text { since } x-\dot{B}=\bar{Z}
$$

The proof is quite technical and will be dome in several stops. RELATNG HOMOLOGY GROUPS OF A COVERING TO HOMOLOGY GROUPS OF A SPACE
Let x be a space and $U=\left\{u_{\alpha}\right\}_{\alpha \in A}$ be a collection of subsets of X st.
the interiors of the $u_{\alpha}^{\prime} s$ coven X,

$$
x=\bigcup_{\alpha \in \mathcal{A}} \dot{u}_{\alpha}
$$

We say that a subset $Q \subset X$ is U-small if $\exists \alpha \in A$ st. $Q \subset U_{\alpha}$.
Consider the subgroup of $S_{p}(x)$ generate by $S_{p}\left(U_{\alpha}\right) \forall \alpha$. Denote it by $s_{p}^{u}(x)$. The elements are chains $\sum_{i} n_{i} b_{i}$ such that each σ_{i} has image contained in some set in the cover U The boundary map $\partial: S_{p}(x) \rightarrow S_{p-1}(x)$ takes $s_{p}^{u}(x)$ to $s_{p-1}^{u}(x)$, so the groups $S_{p}^{u}(x)$ form a chain complex. We denote this chain complex $C_{n}^{u}(x)$ and it is a subcomplex of $C_{n}(x)$.

We denote the homolog groups of $c_{n}^{u}(x)$ by $H_{p}^{u}(x)$.
THEOREM 1
the inclusion chain map $i^{u}: C_{n}^{u}(x) \rightarrow C_{n}(x)$ induces an isomorpherons in homology

$$
i_{*}^{u}: H_{p}^{u}(x) \stackrel{\cong}{\Rightarrow} H_{p}(x) \quad \forall p .
$$

To prove theorem 1 , we will apply the so-called barycentric subdivision process.
BARYCENTRIC SUBDIVISION
(1) BARYCENTRIC SUBDIVISION

OF SIMPLICES
Let $\sigma=\left[v_{0}, v_{1}, \ldots, v_{n}\right]$ be an m-simplex in \mathbb{R}^{d}. Then

$$
\sigma=\left\{\sum_{i=0}^{n} t_{i} v_{i} \mid 0 \leq t_{i} \leq 1, \sum t_{i}=1\right\}
$$

The BARYCENTER or 'center of gravity' of the simplex 6 is the point

The BARYCENTRIC SUBDIVISION of $\left[v_{0}, v_{1}, \ldots, v_{n}\right]$ is the decomposition of $\left[v_{0}, v_{1}, \ldots, v_{n}\right]$ into m-simplices
$\left[b, w_{0}, \ldots, w_{n-1}\right]$ where, inductively, $\left[w_{0}, \ldots, w_{n-1}\right]$ so an $(m-1)$-simplex in the barycentric subdivision of a face $\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right]$.
the induction stents with $n=0$.

$$
n=0 \quad{\underset{\text { subdivision }}{\overrightarrow{~ b a r g c e n t r i c ~}}}_{\overrightarrow{\text { sun }}}^{\text {- }}
$$

$n \geq 2$
barycentric

$$
G=\left[V_{0},-, V_{n}\right] \text { subdivision } \tau=\left[b, w_{0}, \ldots, w_{n-1}\right]
$$

where $\left[\omega_{0}, \ldots, w_{n-1}\right]$ is a $(n-1)-5 x$ from the barycentric subdivision of a face $\left[v_{0}, \ldots, v_{1}, \ldots, v_{n}\right]$ of 6

CLAIM
$\operatorname{diam}\left[b, w_{0}, \ldots, w_{n-1}\right] \leqslant \frac{n}{n+1} \operatorname{diam}\left[v_{0}, \ldots, v_{n}\right]$ $\lambda_{\text {max }}$ distance
between any two of its vertices $\sin u$

$$
\left|v-\sum_{i} t_{i} v_{i}\right|=\mid \sum_{i} t_{i}\left(v-v_{i}\left|\leq \sum_{i} t_{i}\right| v-v_{i} \mid\right.
$$

$$
\in \sum_{i} t_{i} \max _{j}\left|v-v_{j}\right|=\max _{\gamma}\left|v-v_{j}\right|
$$

To obtain the bound, we therefore need to verify that the distance between any two vertices ω_{j} and ω_{k} of a simplex τ of the barycentric subdivision of $\left[v_{0}, \cdots, v_{n}\right]$ is at most

$$
\frac{n}{(n+1)} \operatorname{didam}\left[v_{0}, \ldots, v_{n}\right] .
$$

(1) $w_{j} \& w_{k} \neq b$, the bargenter of $\left[v_{0}, \ldots, v_{n}\right]$ In this case the statement follows by induction on n as these two points lie in a proper face of $\left[v_{0}, \ldots, v_{n}\right]$:

$$
h=1
$$

$$
\operatorname{diam}_{\operatorname{diam}_{"}\left[v_{0}, b\right] \leq \frac{1}{2}}\left[v_{1}, b\right] \text { diam }\left[v_{0}, v_{1}\right]
$$

$$
\begin{aligned}
\left|w_{i}-w_{j}\right| & \leqslant \frac{n-1}{n} \operatorname{diam}\left[v_{0}, \ldots, \hat{v}_{1}, \ldots, v_{n}\right] \\
& \leqslant \frac{n}{n+1} \operatorname{diam}\left[v_{0}, \ldots, v_{n}\right] \\
\lambda & \leq \frac{n}{n+1}
\end{aligned}
$$

(2) Suppose WLOG that $w_{j}=b$.
then
$\left|b-w_{k}\right| \leqslant\left|b-v_{i}\right|$ for some i. Let b_{i} be the bargentes of $\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right]$

$$
b_{i}=\frac{1}{n} \sum_{j \neq i} V_{j}
$$

$$
b=\frac{1}{n+1} v_{i}+\frac{n}{n+1} b_{i}
$$

$$
\begin{aligned}
\left|b-V_{i}\right| & =\frac{n}{m+1}\left|b_{i}-V_{i}\right| \quad \text { MPORTANT: } \\
& \leqslant \frac{n}{n+1} \operatorname{diam}\left[V_{0}, \ldots V_{n}\right]
\end{aligned}
$$

(2) BARYCENTRIC SUBDIVISION

OF LINEAR CHAINS
Let $Y \subset \mathbb{R}^{d}$ be a convex set.
we define
$L S_{p}(Y)=\left\langle 6: \Delta^{p} \rightarrow Y\right| 6$ is a linear map \rangle

$L S_{p}(y) \subset S_{p}(y)$ \& the boundary map maps $L S_{p}(y)$ to $L S_{p_{-1}}(f)$.
Let $L S_{-1}(y)=\mathbb{Z}\langle[\phi\rangle \leftarrow$ empty simplex
and $\partial\left[\omega_{0}\right]=[\phi] \forall 0-s x \omega_{0}$.

We have the following chain complex,

$$
\begin{aligned}
\cdots+S_{p}(y) & \rightarrow L S_{p-1}(7) \\
\rightarrow & \rightarrow L_{1}(7) \rightarrow L S_{0}(y) \rightarrow \\
& \rightarrow \mathbb{Z}
\end{aligned}
$$

a subcomplex of $C_{n}(7)$ that we denote by $L_{n}(7)$
Each $b \in \mathcal{I}$ determines a homomorphism $b: L S_{p}(7) \rightarrow L S_{p+1}(7)$ defined by $b\left(\left[w_{0}, \ldots, w_{p}\right]\right)=\left[b, w_{0}, \ldots, w_{p}\right]$
\& extended to all of $L S_{p}(7)$ linearly CONE OPERATOR

b sends a linear chain to the cone that has this chain as a base \& whose tip is b

Let's compute

$$
\begin{aligned}
& \partial\left(b\left[w_{0}, . ., w_{p}\right]\right)=\partial\left(\left[b_{1} w_{0}, \ldots, w_{p}\right]\right) \\
& =(-1)^{0}\left[w_{0}, . . w_{p}\right]+(-1)^{1}\left[b_{1} w_{1}, \ldots, w_{p}\right] \\
& +(-1)^{2}\left[b_{1} w_{0}, w_{2}, \ldots, w_{p}\right]+\ldots(-1)^{p}\left[b_{1} w_{0} \ldots w_{p}\right] \\
& =\left[w_{0}, \ldots, w_{p}\right]-b\left(\left[w_{1}, \ldots, w_{p}\right]+(-1)^{1}\left[w_{0} w_{2}, w_{p}\right]\right. \\
& \\
& \left.+\ldots+(-1)^{p}\left[w_{0}, \ldots, w_{p-1}\right]\right)= \\
& =\left[w_{0}, \ldots, w_{p}\right]-b \partial\left[w_{0}, \ldots, w_{p}\right]= \\
& =\left[i d-b_{0} \partial\right)\left[w_{0}, \ldots, w_{p}\right] \\
& \Rightarrow \partial b=i d-b_{0} \partial
\end{aligned}
$$

b is a CHAIN HOMOTOPY between O and the identity, on the augmented chain complex LC (I).

Now we define al SUBDIVISION HOMOMORPHISM sep $^{L} S_{p}(4) \rightarrow$ LS (\mathcal{Y}) by induction on p.

$$
p=-1
$$

$$
\begin{aligned}
& s d_{-1}([\phi])=[\phi] \\
& s d_{-1}=i \phi
\end{aligned}
$$

$p \geq 0$ for generators $b \in \operatorname{LS}(7)$

$$
s d_{p}(\sigma)=b_{\sigma}\left(s d_{p-1}(\partial \sigma)\right),
$$

where b_{y} is the barycenter of σ

$$
\begin{array}{ll}
p=0 \quad & s d_{0}\left(\left[w_{0}\right]\right)=w_{0}([\phi])=\left[w_{0}\right] \\
& \Rightarrow s d_{0}=1 \\
p=1 & \\
& s d_{1}\left(\left[w_{0}, w_{1}\right]\right)= \\
\hat{w}_{0} \quad w_{1} \quad & =b\left((-1)^{0}\left[w_{1}\right]+(-1)^{1}\left[w_{0}\right]\right) \\
& =b\left(\left[w_{1}\right]-\left[w_{0}\right]\right)=
\end{array}
$$

$$
=\left[b, w_{1}\right]-\left[b, w_{0}\right]
$$

sum of the 1-simplices
in the barycentric subdivision with contain signs
(compare the def. of sd with that of the subdivision of a simplex)
sd is a chain map.
We prove this by induction:

$$
\begin{gathered}
S d_{-1} \circ \partial=\partial \circ S d_{0} \\
\Pi_{i d} \\
i d
\end{gathered}
$$

$$
\begin{aligned}
& \therefore L S_{p+1}(y) \rightarrow L S_{p}(y) \rightarrow \cdots L_{0}(y) \rightarrow L S_{-1}(y) \rightarrow 0
\end{aligned}
$$

Squares up to p commute.

$$
\partial b_{6}=i d-b_{3} \partial
$$

induction step.

$$
\begin{aligned}
& \partial\left(s d_{p+1}(z)\right)=\partial\left(b_{b}\left(s d_{p}(\partial \sigma)\right)\right) \stackrel{\downarrow}{=} \partial s d_{p}= \\
= & s d_{p}(\partial \sigma)-b_{6}\left(\partial s d_{p}(\partial \sigma)\right) \stackrel{\sqrt{2}}{=} \delta d_{p-1} \partial \\
= & s d_{p}(\partial \sigma)-b_{\sigma}\left(s d_{p-1} \partial(\partial \sigma)\right) \stackrel{\downarrow}{=} \partial \partial=0 \\
= & s d_{p}(\partial \sigma)
\end{aligned}
$$

Next we build a chain hormotopy $D: L S_{p}(7) \rightarrow L S_{p+1}(y)$ between Sd and id.

$$
\begin{aligned}
& D_{p} \cdot L S_{p}(7) \rightarrow L_{S_{p 1}}(4) \\
& \text { St. } \quad \partial D+D \partial=i d-S d
\end{aligned}
$$

We define D inductively.

$$
\begin{aligned}
& L S_{p+1}(y) \rightarrow L S_{p}(y) \rightarrow \cdots L S_{0}(y) \rightarrow L S_{-1}(y) \rightarrow 0 \\
& \text { sd } \downarrow \text { id } D^{D y} \text { sj id } / D_{-2} \\
& L S_{p+1}(y) \rightarrow L S_{p}(y) \rightarrow \rightarrow L S_{0}(y) \rightarrow L S_{-1}(y) \rightarrow 0 \\
& D_{-2}=0 \\
& \partial D_{-1}+D_{2} \partial=0+0=0 \\
& D_{-1}=0 \\
& i d-s d_{-1}=i d-i d=0 \\
& \Rightarrow \partial D_{-1}+D_{-2} \theta=i d-s d-1 \\
& p \geq 0 \text { We define } D_{p} \text { inductively. } \\
& \sigma \in L S_{p}(\mathcal{I}) \text { a simplex } \\
& D_{p}(b)=b_{z}\left(\sigma-D_{p-1}(\partial b)\right) \\
& \text { Parycentes of } \sigma
\end{aligned}
$$

We check wing induction that $\partial D+D \partial=i d-s d$. Assume that all maps up to D_{p} satisfy this.

$$
\begin{aligned}
& \partial D_{p+1} \sigma=\partial\left(b_{b}\left(\sigma-D_{p}(\partial \sigma)\right)\right) \cong \partial b_{b}=i d-b_{b} \partial \\
& =\sigma-D_{p}(\partial \sigma)-b_{\sigma}\left(\partial\left(\sigma-D_{p}(\partial \sigma)\right)\right) \\
& =\sigma-D_{p}(\partial \sigma)-b_{f}(\partial \sigma)-\partial D_{p}(\partial \theta) \\
& \rightarrow L S_{p+2}(y) \rightarrow L S_{p+1}(y) \xrightarrow{\partial} L S_{p}(y) \rightarrow L S_{p-1}(y) \rightarrow \text {. } \\
& \rightarrow L S_{p+2}(y) \rightarrow L S_{p+1}(y) \rightarrow L S_{p}(y) \rightarrow L S_{p-1}(y) \rightarrow \\
& \text { IH: } \partial D_{p}+D_{p-1} \partial=i d-S d \\
& \Rightarrow i d-\partial D_{p}=S d_{p}+D_{p}-\partial \\
& \text { I. }=\text { H } \sigma-D_{p}(\partial \zeta)-b_{\sigma}\left(s d_{p}(\partial \zeta)+D_{p-1} \partial(\partial \sigma)\right) \\
& =\sigma-D_{p} \partial(\zeta)-b_{\zeta} s d_{p}(\partial \sigma) \\
& =\zeta-D_{p} \partial(\zeta)-\operatorname{sd}_{p+1}(\zeta) \\
& \Rightarrow \partial D_{p+1}(\sigma)+D_{p} \partial(\sigma)=\sigma-s_{p+1}(\sigma)
\end{aligned}
$$

(3) BARYCENTRIC SUBDIVISION OF
GENERAL CHAINS

Let X be a topological space. Define homomorphisms

$$
s d=s d_{p}: S_{p}(x) \rightarrow S_{p}(x)
$$

on generators $6\left(6: \Delta^{p} \rightarrow x\right)$

We subdivide this space, which is a convex subset in \mathbb{R}^{p+1}

$$
\begin{aligned}
& \operatorname{sd}(b)=\sigma_{c}\left(s d\left(i d_{i d}^{i d} \rightarrow \Delta^{p}\right)\right) \\
& \left(i d: \Delta^{p} \rightarrow \Delta^{p}\right) \in L S_{p}\left(\Delta^{p}\right) \subset S_{p}\left(\Delta^{n}\right)
\end{aligned}
$$

$\sigma: \Delta^{p} \rightarrow x$ induces $\sigma_{c}: S_{p}\left(\Delta^{p}\right) \rightarrow S_{p}(x)$

$$
\begin{aligned}
& S_{p}\left(\Delta^{p}\right) \xrightarrow{\sigma_{c}} S_{p}(x)^{\gamma^{b}} \\
& \downarrow s d \\
& S_{p}\left(\Delta_{v}^{p}\right) \\
& \operatorname{sd}(i d)
\end{aligned}
$$

sd is a chain map

$$
\begin{aligned}
& \partial(s d(\sigma))=\partial \sigma_{c}\left(s d\left(i d: \Delta^{p} \rightarrow \Delta^{p}\right)\right)= \\
& =\sigma_{c} \partial\left(s d\left(i d: \Delta^{p} \rightarrow \Delta^{p}\right)\right)=
\end{aligned}
$$

\uparrow
σ_{c} is a chain
map

$$
\begin{aligned}
& =\sigma_{c} s d\left(\partial_{c} i d_{\Delta}\right)= \\
& =\sigma_{c} s d\left(\sum_{i=0}^{p}(-1)^{i} i_{\uparrow_{\Delta_{i}^{p}}}\right)
\end{aligned}
$$

\uparrow restriction of id to the th face of \triangle

$$
\begin{aligned}
& =\sum_{i=0}^{p}(-1)^{i} \sigma_{c} s d\left(i d \Delta_{\Delta_{1}^{p}}^{5} \begin{array}{c}
\text { sum of } \\
\text { signed sinplices } \\
\text { in the braycentic } \\
\text { subdivision }
\end{array}\right. \\
& =\sum_{i=0}^{p}(-1)^{i} \operatorname{sd}\left(\left.\sigma_{c}\right|_{\Delta_{i}^{p}}\right)^{\text {of } \Delta_{i}^{p}} \\
& =\operatorname{sd}\left(\left.\sum_{j=0}^{p}(-1)^{i} \sigma_{c}\right|_{\Delta_{i}^{p}}\right)= \\
& =\operatorname{sd}(\partial \sigma)
\end{aligned}
$$

In a similar fashion we define $D: S_{p}(x) \rightarrow S_{\varphi+1}(x) \quad$ hue $D(Z)=\sigma_{c}\left(D(\text { id } \Delta)^{p}\right)$ D defined for D is a chain homotopy between sd \& rid.

$$
\begin{aligned}
\text { sd } \alpha(\sigma) & =\partial\left(\sigma_{c}\left(D\left(i d_{\Delta} p\right)\right)\right) \stackrel{f}{=} \\
& =\sigma_{c}\left(\partial D\left(i d_{\Delta} p\right)\right)=
\end{aligned}
$$

$\begin{aligned} & D \text { is } \partial \\ & \text { a chain }\end{aligned}=b_{c}\left(i d_{p}-s d\left(i d_{\Delta}\right)-D \partial\left(i d_{\Delta}\right)\right)$ nomotopy
for linear chains

$$
\begin{aligned}
& =\zeta-s d(G)-D \partial(\sigma)= \\
& =(i d-s d-D \partial)(\zeta)
\end{aligned}
$$

PROOF OF THEOREM 1
Let U be a covering as in the statement of theorem 1 . Let $b \in S_{p}(x)$ be a singular simplex.
Then $\left\{\sigma^{-1}(\dot{u}) \mid u \in U\right\}$ is an open covering of $\Delta^{P} \cdot \Delta^{P}$ is compact, so we can select the Lebesgue number 3 of this covering [Lebesgue's number Lemma.

If the metric spare (x, d) is compact 8 an open cover of X is given, then there exists a number 570 such that every subset of x having diameter less than b is contained in some member of the cover.]
Pick $m \in \mathbb{N}$ large enough that \checkmark diameter of

$$
\left.\left(\frac{n}{n+1}\right)^{m_{c}}\right|_{m} ^{\sqrt{2} \leq 3} \text { will d }
$$ an m-simplex

will determine how much we have to subdivide simplices so that each lies in some $v \in U$

If we use $s d$. m =times on

6 we get a chain consisting of singular simplices, of which each lies en i some ÚUU.

$$
\sigma_{c}\left(s d^{m}\left(i d_{\Delta}\right)\right)=s d^{m}(z) \in S_{p}^{u}(x) .
$$

For each p-simplex b we select m_{G} in a way that it is the smallest hon-negative integer for which $s d^{m} z(\sigma) \in s_{p}^{u}(x)$

$$
\left(m b=0 \Leftrightarrow b \in S_{p}^{u}(x)\right) \text {. }
$$

We define

$$
\begin{aligned}
& \bar{D}: S_{p}(x) \rightarrow S_{p+1}(x) \\
& \bar{D}(z)=\sum_{j=0}^{m_{b-1}} D \underbrace{\left(s d^{j}(\sigma)\right)}
\end{aligned}
$$

for σ a p-simplex the D that for linear chains

If $\quad m_{G}=0, \bar{D}(Z)=0$.
We calculate

$$
\begin{aligned}
& (\partial \bar{D}+\bar{D} \partial)(\sigma)=\partial \sum_{j=0}^{m_{b}-1} D\left(s d^{j}(\sigma)\right) \\
& +\sum_{i=0}^{p}(-1)^{i} \bar{D} G^{i}= \\
& \text { isth face } \\
& =\sum_{j=0}^{m_{z}-1} \partial D(\operatorname{sdj}(b))+\sum_{i=0}^{p}(-1)^{i} \sum_{j=0}^{m_{i} \sum_{j-1} \text { of } \sigma} D\left(\operatorname{sd}^{j}\left(z^{i}\right)\right) \\
& =\sum_{j=0}^{m_{b}-1}\left(s d^{j}(6)-s d^{j+1}(b)-D \partial\left(s d d^{j}(6)\right)\right) \\
& +\sum_{i=0}^{p}(-1)^{m^{i} \sum_{j=0}^{i-1}} D\left(s d^{j}\left(z^{i}\right)\right)= \\
& =\sigma-s d^{m_{\sigma}}(\zeta)-\sum_{j=0}^{m_{b}-1} D\left(s d^{j}(\partial \sigma)\right)+
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=0}^{p}(-1)^{m^{i_{i-1}}} \sum_{j=0} D\left(\operatorname{sd}^{j}\left(z^{i}\right)\right)= \\
& =\sigma-s d^{m_{b}}(\sigma)-\sum_{j=0}^{m_{b}-1} \sum_{i=0}^{p}(-1)^{i} D\left(s d^{j}\left(\sigma_{i}\right)\right) \\
& +\sum_{i=0}^{p}(-1)^{m^{i}} \sum_{j=0}^{m_{i}-1} D\left(s d^{j}\left(z^{i}\right)\right)= \\
& =\sigma-s d^{m_{\sigma}(\sigma)}+\sum_{i=0}^{k}(-1)^{i} \sum_{j=m_{\sigma_{i}}}^{m_{b}-1} D\left(s d^{j}\left(\sigma^{i}\right)\right) \\
& \left(m_{b_{i}} \leq m_{b}\right)
\end{aligned}
$$

We set

$$
\rho(\zeta):=\sigma-\partial \bar{D}(\zeta)-\bar{D} \partial(\zeta)
$$

Note that $p(\delta) \in S_{p}^{u}(x)$.
This p is a map: $S_{p}(x) \rightarrow S_{p}^{u}(x)$
p is a chain map:

$$
\begin{aligned}
& \partial \rho(\zeta)=\partial b-\partial \partial \bar{D}(b)-\partial \bar{D} \partial(b) \\
&=\partial b-\partial \bar{D} \partial(\zeta) \\
&=\partial b-\partial \bar{D} \partial(\zeta)-\bar{D} \partial \partial(b) \\
&=\rho(\partial b) \\
& \Rightarrow \partial \bar{D}-\bar{D} \partial=i d-i_{c}^{u} \rho,
\end{aligned}
$$

$$
\text { where } i_{i}^{u} c_{n}^{u}(x) \rightarrow C_{n}(x) \text { is }
$$

the inclusion.

$$
D \text { is a chain homotopy from }
$$

$$
i_{c}^{i_{0}} p \text { to id. }
$$

$$
\text { Also, } \rho_{0} i_{c}^{u} p\left(i_{c}^{u}(\sigma)\right)=0
$$

$$
=\sigma-\partial \bar{D}\left(i_{c}^{u}(6)\right)-D \partial\left(i_{c}^{u}(6)\right)
$$

so P is the chain homotopy inverse of i_{c}^{u}.
It follows from homotopy invariance statements that i_{*}^{u} is an isomorphism $H_{p}^{u}(x) \xrightarrow{i_{x}^{u}} H_{p}(x)$.
PROOF OF EXCISION THEOREM
Let $u=\{A, B\}$ such that $A \cup B=X$.

$$
i_{c}^{u}: C_{n}^{u}(x) \rightarrow C_{n}(x)
$$

is a chain equivalence. From proof of theorem 1 we get maps $\rho \& \bar{D}$ that map simplices in A to simplices in A.
p and \bar{D} induce maps on quotients

$$
\begin{aligned}
& p: S_{p}(x) / S_{p}(A) \rightarrow S_{p}^{u}(x) /(A) \\
& D: S_{p}(x) / S_{p}(A) \rightarrow S_{p+1}(x) / S_{p+1}(A)
\end{aligned}
$$

It still holds that

$$
\partial \bar{D}+\bar{D} \partial=i d-i_{c} \circ \rho
$$

and that

$$
i_{c}^{u}: C_{n}^{u(x)} C_{C_{n}(A)} \rightarrow C_{n}(x) / C_{n}(A)
$$

is a chain equivalence and consequently it induces an isomorphism on homology.

The map

$$
\frac{S_{p}(B)}{S_{p}(A \cap B)} \rightarrow S_{p}^{u}(X) / S_{p}(A)
$$

induced by vriclusion is an isomorphism since both quotient groups are free with the bases singular p-simplices in B that do not lie in $A \Rightarrow$

$$
\begin{aligned}
H_{p}(x, A) & \cong H_{p}\left(C_{n}^{n}(x) / C_{n}(A)\right) \\
& \cong H_{p}(B, A \cap B)
\end{aligned}
$$

Here is an example of the machinery we developed, a classical result from 1910 due to Brouwer, known as

INVARIANCE OF DIMENSION
If non-empty open sets UCRen and $V \subset \mathbb{R}^{n}$ are homeomorphic, then $m=n$.
Let $x \in U$. By excision

$$
H_{p}\left(U, U-\{\times y) \cong H_{p}\left(\mathbb{R}^{m}, \mathbb{R}^{m}-\{x\}\right)\right.
$$

From LES of ($\left.\mathbb{R}^{m}, \mathbb{R}^{m}-\{x\}\right)$

$$
\begin{aligned}
\sim & \tilde{H_{p}}\left(\mathbb{R}^{m}-\{x\}\right) \rightarrow \widetilde{H}_{p}\left(\mathbb{R}^{m}\right) \rightarrow H_{p}\left(\mathbb{R}^{m}, \mathbb{R}^{m}-\{x\}\right) \rightarrow \\
& \rightarrow \widetilde{H_{p-1}}\left(\mathbb{R}^{m}-\{x\}\right) \rightarrow \widetilde{H_{p-1}}\left(\mathbb{R}^{m}\right)
\end{aligned}
$$

we get $H_{p}\left(\mathbb{R}^{m}, \mathbb{R}^{m}-\{x y) \cong \tilde{H}_{p-1}\left(\mathbb{R}^{m}-\{x\}\right)\right.$
Since $\mathbb{R}^{m}-\{x\}$ strongly deformation retracts to S^{m-1},

$$
H_{p}(u, u-\{x\}) \cong H_{p-1}\left(S^{m-1}\right)= \begin{cases}\mathbb{Z} & p=m \\ 0 & \text { otherwise }\end{cases}
$$

Homeomorphism $h: U \rightarrow V$ yields a homeomorphism of pairs

$$
(U, U-\{x\}) \text { anal }(V, V-\{h(x)\})
$$

and so

$$
H_{p}(U, U-\{x\}) \cong H_{p}(V, V-\{h(x)\}) .
$$

Since abs

$$
H_{p}(V, V-\{h(x)\}) \cong H_{p-1}\left(\delta^{n-1}\right)= \begin{cases}\mathbb{Z} & p=w \\ 0 & \text { otherwise }\end{cases}
$$

it follows that $m=n$.

