We have the following chain complex,

$$
\begin{aligned}
\cdots+L S_{p}(y) \rightarrow L S_{p-1}(7) & \rightarrow S_{1}(y) \rightarrow L S_{0}(y) \rightarrow \\
& \rightarrow \mathbb{Z} \rightarrow \ldots
\end{aligned}
$$

a subcomplex of $C_{n}(\mathcal{Y})$ that we denote by $L_{n}(7)$.
Each $b \in \mathcal{I}$ determines a homomorphism $b: L S_{p}(y) \rightarrow L S_{p+1}(y)$ defined by:

$$
b\left(\left[w_{0}, \ldots, w_{\varphi}\right]\right)=\left[b, w_{0}, \ldots, w_{p}\right]
$$

\& extended to all of $L S_{p}(7)$ linearly

$$
\int \text { CONE OPERATOR }
$$

b sends a linear chain to the cone that has this chain as a base \& whose tip is b

Let's compute

$$
\begin{aligned}
& \partial\left(b\left[w_{0}, \ldots, w_{p}\right]\right)=\partial\left(\left[b_{1}, w_{0}, \ldots, w_{p}\right]\right) \\
& =(-1)^{0}\left[w_{0}, \ldots, w_{p}\right]+(-1)^{1}\left[b_{,} w_{1}, \ldots, w_{p}\right] \\
& +(-1)^{2}\left[b_{1} w_{0}, w_{2}, \ldots, w_{p}\right]+\ldots(-1)^{p}\left[b_{p} w_{1}, \ldots, w_{p-1}\right] \\
& =\left[w_{0}, \ldots, w_{p}\right]-b\left[\left[w_{1}, \ldots, w_{p}\right]+(-1)^{1}\left[w_{0}, w_{2}, w_{p}\right]\right. \\
& \left.+\ldots+(-1)^{p}\left[w_{0}, \ldots w_{p-1}\right]\right)= \\
& =\left[w_{0}, \ldots, w_{p}\right]-b \partial\left[w_{0}, \ldots, w_{p}\right]= \\
& =\left[i d-b_{0} \partial\right)\left[w_{0}, \ldots, w_{p}\right] \\
& \Rightarrow \partial b=i d-b_{0} \partial
\end{aligned}
$$

b is a CHAIN HOMOTOPY between 0 and the identity, on the augmented chain complex $L C_{h}(I)$.

Now we define al SUBDIVISION HOMOMORPHISM $\delta d_{p i} L S_{p}(\Psi) \rightarrow L S_{p}(\mathcal{Y})$ by induction on p.

$$
p=-1
$$

$$
\begin{aligned}
& s d_{-1}([\phi])=[\phi] \\
& s d_{-1}=i \ell
\end{aligned}
$$

$p \geq 0$ for generators $b \in L S_{p}(7)$

$$
s d_{p}(\sigma)=b_{\sigma}\left(s d_{p-1}(\partial \sigma)\right)
$$

where b_{b} is the bangcentes of σ

$$
\begin{aligned}
& p=0 \quad s d_{0}\left(\left[w_{0}\right]\right)=w_{0}([\phi])=\left[w_{0}\right] \\
& \Rightarrow s d_{0}=a \dot{c} \\
& \begin{aligned}
p=1 & \\
& s d_{1}\left(\left[w_{0}, w_{1}\right]\right)= \\
\underline{w}_{0}^{b} \quad w_{1} \quad & =b\left((-1)^{0}\left[w_{1}\right)+(-1)^{1}\left[w_{0}\right]\right) \\
& =b\left(\left[w_{1}\right]-\left[w_{0}\right]\right)=
\end{aligned}
\end{aligned}
$$

$$
=\left[b_{i}, w_{1}\right]-\left[b_{1}, w_{0}\right]
$$

sum of the 1-simplices
in the barycentric subdivision with certain signs
(compare the def. of sd with that of the subdivision of a simplex)
sd is a chain map.
We prove this by induction:

$$
\begin{gathered}
S_{d-} \circ \partial=\partial \circ S d_{0} \\
11 \\
i d
\end{gathered}
$$

$$
\begin{aligned}
& \ldots L S_{p+1}(y) \rightarrow L S_{p}(y) \rightarrow \cdots \operatorname{li}_{0}(y) \rightarrow \operatorname{LS_{-1}}(y) \rightarrow 0 \\
& \ldots L S_{p+1}^{L S p_{p+1}}(y) \rightarrow L S_{p}(y) \rightarrow \ldots L S_{0}^{\text {did }}(y) \rightarrow L S_{-1}^{\text {id }}(y) \rightarrow 0
\end{aligned}
$$

Squares up to p commute.

$$
\partial b_{b}=i d-b_{2} \partial
$$

induction step.

$$
\begin{aligned}
& \partial\left(s d_{p+1}(\sigma)\right)=\partial\left(b_{b}\left(s d_{p}(\partial \sigma)\right)\right) \stackrel{\downarrow}{=} \partial s d_{p}= \\
= & s d_{p}(\partial \sigma)-b_{6}\left(\partial s d_{p}(\partial \sigma)\right) \stackrel{\sqrt{2}}{=} \delta d_{p-1} \partial \\
= & s d_{p}(\partial \sigma)-b_{\sigma}\left(s d_{p-1} \partial(\partial \sigma)\right) \stackrel{\downarrow}{=} \partial \partial=0 \\
= & s d_{p}(\partial \sigma)
\end{aligned}
$$

Next we build a chain homotopy $D: L S_{p}(7) \rightarrow L S_{p+1}(y)$ between Sd and id.

$$
\begin{array}{ll}
\quad \text { Chain map } \\
D_{p} \cdot L S_{p}(7) \rightarrow L_{p+1}(7) \\
\text { St. } \partial D+D \partial=i d-s d
\end{array}
$$

We define D inductively.

$$
\begin{aligned}
& \therefore L S_{p+1}(y) \rightarrow L S_{p}(y) \rightarrow \cdots L S_{0}(y) \rightarrow L S_{-1}(y) \rightarrow 0 \\
& \text { sd } \int_{i d} D^{2} y \text { adj } 10 / D_{-2} \\
& \ldots L S_{p+1}(y) \rightarrow L S_{p}(y) \rightarrow \rightarrow L S_{0}(y) \rightarrow L S_{-1}(y) \rightarrow 0 \\
& D_{-i}=0 \\
& \partial D_{-1}+D_{2} \partial=0+0=0 \\
& D_{-1}=0 \\
& i d-s d_{-1}=i d-i d=0 \\
& \Rightarrow \partial D_{-1}+D_{-2} \partial=1 d-s d_{-1} \\
& p \geq 0 \text { We define } D_{p} \text { inductively. } \\
& \sigma \in L S_{p}(1) \text { a simplex } \\
& D_{p}(b)=b_{z}\left(\sigma-D_{p-1}(\partial b)\right) \\
& T_{\text {parycentes of } \sigma}
\end{aligned}
$$

We check wing induction that $\partial D+D \partial=i d-s d$. Assume that all maps up to D_{p} satisfy this.

$$
\begin{aligned}
& \partial D_{p+1} \sigma=\partial\left(b_{6}\left(\sigma-D_{p}(\partial \sigma)\right)\right) \cong \partial b_{b}=i d-b_{6} \partial \\
& =\sigma-D_{p}(\partial \sigma)-b_{b}\left(\partial\left(\sigma-D_{p}(\partial \sigma)\right)\right) \\
& \left.=\sigma-D_{p}(\partial \sigma)-b_{3}(\partial G)-\partial D_{p}(\partial \theta)\right) \\
& \rightarrow L S_{p+2}(y) \rightarrow L S_{p+1}(y) \xrightarrow{\partial} L S_{p}(y) \rightarrow L S_{p+1}(y) \rightarrow \text {. } \\
& \rightarrow L S_{p+2}(y)_{\partial} \rightarrow S_{p+1}(y) \rightarrow \operatorname{LSp}(y) \rightarrow L S_{p-1}(y) \rightarrow \\
& \text { IH: } \partial D_{p}+D_{p-1} \partial=i d-s d \\
& \Rightarrow i d-\partial D_{p}=s d_{p}+D_{p}, \partial \\
& I_{=}=H \quad \sigma-D_{p}(\partial \zeta)-b_{\sigma}\left(s d_{p}(\partial \zeta)+D_{p-1} \partial(\partial \sigma)\right) \\
& =\sigma-D_{p} \partial(\zeta)-b_{\zeta} s d_{p}(\partial \sigma) \\
& =\sigma-D_{p} \partial(\zeta)-\operatorname{sd}_{p+1}(\sigma) \\
& \Rightarrow \partial D_{p+1}(b)+D_{p} \partial(\sigma)=\sigma-s d_{p+1}(\sigma)
\end{aligned}
$$

(3) BARYCENTRIC SUBDIVISION OF GENERAL CHAINS

Let X be a topological space. Define homomorphisms

$$
s d=s d_{p}: S_{p}(x) \rightarrow S_{p}(x)
$$

on generators $6\left(6: D^{P} \rightarrow x\right)$

We subdivide this space, which is a convex subset in \mathbb{R}^{p+1}

$$
\begin{aligned}
& \operatorname{sd}(b)=\sigma_{c}\left(\operatorname{sd}\left(\text { id: }^{\left.i p \rightarrow \Delta^{p}\right)}\right)\right. \\
& \left(i d: \Delta^{p} \rightarrow \Delta^{p}\right) \in L S_{p}\left(\Delta^{p}\right) \subset S_{p}\left(\Delta^{n}\right)
\end{aligned}
$$

$\zeta: \Delta^{p} \rightarrow x$ induces $\sigma_{c}: S_{p}\left(\Delta^{p}\right) \rightarrow S_{p}(x)$

$$
\begin{aligned}
& S_{p}(\Delta) \xrightarrow{\sigma_{c}} S_{p}(x)^{\gamma^{b}} \\
& \| s d \\
& \|_{p}(\Delta d) \xrightarrow{\sigma_{c}} S_{p}(x) \\
& S d(i d)
\end{aligned}
$$

sd is a chain map

$$
\begin{aligned}
& \partial(s d(\partial))=\partial \sigma_{c}\left(s d\left(i d: \Delta^{p} \rightarrow \Delta^{p}\right)\right)= \\
& =\partial_{c} \partial\left(s d\left(i d: \Delta^{p} \rightarrow \Delta^{p}\right)\right)=
\end{aligned}
$$

σ_{c} is a chain

$$
\begin{aligned}
& =\sigma_{c} s d\left(\operatorname{sid}_{\Delta}\right)= \\
& =b_{c} s d\left(\sum_{i=0}^{p}(-1)^{i} i_{\Delta_{i}^{p}}\right)
\end{aligned}
$$

\uparrow_{i} restriction of id to the th face of \triangle

$$
\begin{aligned}
& =\sum_{i=0}^{p}(-1)^{i} \sigma_{c} \operatorname{sd}\left(i d_{\Delta i}^{p}\right) \begin{array}{c}
\text { sum of } \\
\text { signed simplice } \\
\text { in the brancentic } \\
\text { subdivision }
\end{array} \\
& =\sum_{i=0}^{p}(-1)^{i} \operatorname{sd}\left(\left.\sigma_{c}\right|_{\Delta_{i}^{p}}\right)^{\text {of } \Delta_{i}^{p}} \\
& =\operatorname{sd}\left(\left.\sum_{j=0}^{p}(-1)^{i} \sigma_{c}\right|_{\Delta_{i}^{p}}\right)= \\
& =\operatorname{sd}(\partial \sigma)
\end{aligned}
$$

In a similar fashion we define $D: S_{p}(x) \rightarrow S_{p+1}(x)$ we take the $D(z)=\sigma_{c}\left(D\left(\text { id } \Delta^{p}\right)^{<}\right) \begin{aligned} & D \text { defined for } \\ & \text { singular }\end{aligned}$ singular chains
D is a chain homotopy between sd \& id.

$$
\begin{aligned}
& \partial D(\sigma)=\partial\left(\sigma_{c}\left(D\left(i \Delta_{\Delta} p\right)\right)\right) \stackrel{\perp}{=} \text { chain map } \\
& =\sigma_{c}\left(\partial D\left(i d_{\Delta} p\right)\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
D \text { is } \\
a \text { chain } \\
\\
\end{array}=b_{c}\left(i d_{\Delta}-s d\left(i d_{\Delta p}\right)-D \partial\left(i d_{s}\right)\right) \\
& \text { nomotopy } \quad G_{c} D \partial\left(i d_{B}\right)=b_{c} D\left(\sum_{i=0}^{p}(-1) i d_{d_{i}^{?}}^{?}\right)_{p}^{p}= \\
& \text { for linear } \\
& \text { chains } \\
& -\sum_{i=0}^{c}(-1)^{i=0} U_{c} D i d_{\Delta} D_{i}=\sum_{i=0}^{p}(-)^{i} D\left(b_{i}\right) \\
& =D \sum_{i=0}^{D}(-1)^{i} b_{i}=D 06 \\
& =6-\operatorname{sd}(6)-D \partial(Z)= \\
& =(i d-s d-D \partial)(\sigma)
\end{aligned}
$$

Before we prove theorem 1, let's recall Lebesgue's number Lemma.
If the metric spare (x, d) is compact 8 an open cover of x is given, then there exists a number 570 such that every subset of x having diameter less than b is contained in some member of the cover.

