DEGREE OF MAPS $f: S^n \rightarrow S^n$ Let $f: S^n \rightarrow S^n$ be a map. Then $f modulus \quad t_{*}: \widetilde{H}_{n}(S^{n}) \rightarrow \widetilde{H}_{n}(S^{n}).$ Since $\widetilde{H}_n(S^n) \cong \mathbb{Z}$, there exists precisely and de Z, such that $f_x(a) = da$ $\forall a \in \mathbb{Z}$. This number d is called the DEGREE of f and is denoted $deg(f) \in \mathbb{Z}$. SIMPLE PROPERTIES OF DEGREE (1) dug (id) = 1 P_{roof} 1 follows since $(id)_* = id$.

(a) follows
$$
\sin \alpha
$$
 (g of) $* = g * f * g$
(b) If $f \approx g$, then $f * = g * g$, so
(g) If $f \approx g$, then $f * g * g$

PROPOSITION

Let
$$
SPCR^{b+1}
$$
 be the n-dim sphere,
unit the elements of S^n as (x_{n-1}, x_n) .
Let $f: S^n \rightarrow S^n$ be the map
 $\oint (x_{n+1}, x_n) := (-x_{n+1}, x_n)$.
Then $deg(f) = -1$.
Proof
Let n=0. Then $f: \{-1, 1\} \rightarrow \{-1, 1\}$
to the map $f(-1) = 1$, $f(1) = -1$.
 $H_0(\{-1\}) \oplus H_0(\{-1\}) \xrightarrow{\alpha} H_0(S^n)$
 $\overline{Z} \oplus \overline{Z} \qquad \qquad \qquad \downarrow G$
 $(a, b) \qquad \qquad \searrow$
 $q+b \in \overline{Z}$

$$
W_{0}(s) \leftarrow \frac{a}{s} \quad \{ (a_{1}-a)_{1}a \in \mathbb{Z} \} \text{ or } \mathbb{Z}
$$
\n
$$
\int_{t_{*}}^{t_{*}} \int_{\frac{a_{1}}{t_{0}}(s)}^{\frac{a_{1}}{t_{0}}(s)} \frac{\sqrt{1}}{s^{2}} \text{ for all } s \in \mathbb{Z}
$$
\n
$$
W_{0}(s) \leftarrow \frac{a}{s^{2}} \quad \{ (a_{1}-a)_{1}a \in \mathbb{Z} \} \text{ or } \mathbb{Z} \text{ or } \mathbb{Z}
$$
\n
$$
W_{0} = \int_{t_{0}}^{t_{0}} \text{ from } t \text{ is the immediately follows that}
$$
\n
$$
W_{0} = \int_{t_{0}}^{t_{0}} \text{ for all } t_{0} \in \mathbb{Z}
$$
\n
$$
W_{1} = \int_{t_{0}}^{t_{0}} \text{ for all } t_{0} \in \mathbb{Z}
$$
\n
$$
W_{2} = \int_{t_{0}}^{t_{0}} (x_{0}, y_{0}) \text{ for all } t_{0} \in \mathbb{Z}
$$
\n
$$
W_{3} = \int_{t_{0}}^{t_{0}} (x_{0}, y_{0}) \text{ for all } t_{0} \in \mathbb{Z}
$$
\n
$$
W_{4} = \int_{t_{0}}^{t_{0}} (x_{0}, y_{0}) \text{ for all } t_{0} \in \mathbb{Z}
$$
\n
$$
W_{5} = \int_{t_{0}}^{t_{0}} (x_{0}, y_{0}) \text{ for all } t_{0} \in \mathbb{Z}
$$
\n
$$
W_{6} = \int_{t_{0}}^{t_{0}} \text{ for all } t_{0} \in \mathbb{Z}
$$
\n
$$
W_{7} = \int_{t_{0}}^{t_{0}} (x_{0}, y_{0}) \text{ for all } t_{0} \in \mathbb{Z}
$$
\n
$$
W_{8} = \int_{t_{0}}^{t_{0}} (x_{0}, y_{0}) \text{ for all } t_{0} \in \mathbb{Z}
$$
\n
$$
W_{9} = \int_{t_{0}}^{t_{0}} (x_{0}, y_{0}) \text{ for all } t_{0} \in \mathbb{Z}
$$
\n<math display="block</math>

 $e^{\times c}$ is von + homolozo LES of a pair good pair $H_n(S^n) \stackrel{\sim}{\Rightarrow} H_n(S^n, B^n) \stackrel{\sim}{\leftarrow} H_n(B^n, S^{n+}) \stackrel{\sim}{\Rightarrow} H_{n+1}(S^{n+})$ $\int f^{*}$ $\int f^{*}$ $\int_{0}^{1} \left(\int_{0}^{1} \left| d \xi \right|^{p-1} \right) \times$ $f(x)$ $H_{n}(S^{n}) \supseteq H_{n}(S^{n},B^{n}_{+}) \supseteq H_{n}(B^{n},S^{n}) \supseteq H_{n}(S^{n})$ $deg(f|_{S^{n-1}})=-1 \implies$ By undirction all vertical mapos are multiplications b_{λ} -1. \mathscr{D} COROLLARY Let $0\leq i \leq n$, $T_i : S^n \rightarrow S^n$, $\mathbb{U}_{i}^{T}(x_{0},...,x_{n})=\left(x_{0},-x_{i},...,x_{n}\right)$ Then deg (τ_{λ}) = -1. Proof show that $U_{i} \overset{\sim}{\sim} U_{i-1} \overset{\sim}{\sim} \cdots \overset{\sim}{\sim} U_{o}$ (exercise) \Rightarrow deg ti = deg t.

Hint for the homotopy: 2D case

\n
$$
\begin{bmatrix}\n-1 & 0 \\
0 & -1\n\end{bmatrix}\n\begin{bmatrix}\n-1 & 0 \\
0 & 1\n\end{bmatrix} =\n\begin{bmatrix}\n1 & 0 \\
0 & -1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n0 \\
0 \\
0\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n1 & 0 \\
0 & 1\n\end{bmatrix}\n\begin{bmatrix}\n-1 & 0 \\
0 & -1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n0 & 0 \\
0 & 1\n\end{bmatrix} =\n\begin{bmatrix}\n0 & 0 \\
0 & 1\n\end{bmatrix}\n\begin{bmatrix}\n-1 \\
0 \\
0\n\end{bmatrix}\n\begin{bmatrix}\n-1 \\
0 \\
0\n\end{bmatrix} =\n\begin{bmatrix}\n-1 & 0 \\
0 & 1\n\end{bmatrix}\n\begin{bmatrix}\n-1 & 0 \\
-1 & 0\n\end{bmatrix}\n\begin{bmatrix}\n-1 & 0 \\
-1 & 0\n\end{bmatrix}\n\begin{bmatrix}\
$$

IMPORTANT EXAMPLE (the antipodal map) Let $G: S^{n} \rightarrow S^{n}$ be the map $6(x) = -x$. then $deg\delta = (-1)^{n+4}$

Proof $6 = \overline{U}_0 \circ \overline{U}_1 \circ \cdots \circ \overline{U}_n$ $\Rightarrow deg G = deg G \cdot deg G_1 \cdots deg G_n$ $= (-1)^{n+1}$ \boxtimes

COROLLARY If n=even => 67 id.

COROLLARY

Let n be even and $f: S^n \rightarrow S^n$. Then there exists $x \in S^n$, $s.t. f(x) = \pm x$. Proof

Suppose by contradiction that $f(x) \neq x$, $f(x) \neq -x \quad \forall x \in S^n$. $f(x)$ the straight segment, $sin B^{n+1}$ connecting $-\times$ x to $f(x)$ dees not pass through 0.

The same also fields for the segment
\ncommuting
$$
-x
$$
 to f(x).
\nConsider F: $S^n \times \mathbb{I} \rightarrow S^n$
\n $G: S^n \times \mathbb{I} \rightarrow S^n$
\n $F(x, t) := \frac{tf(x) + (1 - x)x}{\|tf(x) + (1 - x)x\|} \leftarrow \frac{1}{x}$
\n $G(x, t) := \frac{t \cdot (-x) + (1 - x) f(x)}{\|t \cdot (-x) + (1 - x) f(x)\|} \leftarrow \frac{t \cdot (-x)}{\|t \cdot (-x) + (1 - x) f(x)\|}$
\n F is a homotopy between id $2 f$.
\n G is a homotopy between id $2 f$.
\n G is a homotopy between f $2 f$ the
\nantipodal map.
\n \Rightarrow deg(f) = (1)ⁿ⁺¹ = -1
\n $\frac{1}{n}$ is even

Contradiction.

