DEGREE OF MAPS f: Sn -> Sn Let f. Sn -> Sn be a map. then f induces $f_*: \widetilde{H}_n(s^n) \to \widetilde{H}_n(s^n)$. Since $H_n(s) \cong ZZ$, there exists precisely one dezz, such that $f_{x}(a) = da \quad \forall a \in \mathbb{Z}$ This number d is called the DEGREE of f and is denoted $dig(f) \in \mathbb{Z}.$ SIMPLE PROPERTIES OF DEGREE (1) deg (id) = 1 (2) $s^n \xrightarrow{f} s^n \xrightarrow{g} s^n \xrightarrow{g} deg(gof) = degg \cdot degf$ (3) $lf f \cong g : s^n \xrightarrow{g} s^n \xrightarrow{g} deg(f) = deg(g).$ Proof (1) follows since $(id)_{x} = id$.

(2) follows since
$$(g \circ f)_{*} = g_{*} \circ f_{*}$$

(3) $if f^{\simeq}g$, then $f_{*} = g_{*}$, so
 $deg(f) = deg(g)$.

PROPOSITION

Let
$$S^{n} \subset \mathbb{R}^{n+1}$$
 be the n-dim sphere,
unite the elements of S^{n} as $(x_{0,...}, x_{n})$.
Let $f: S^{n} \rightarrow S^{n}$ be the mapp
 $f(x_{0,...}, x_{n}) := (-x_{0,}x_{1,...}, x_{n})$.
Then $deg(f) = -1$.
Proof
Let $n=0$. Then $f: \{-1, 1\} \rightarrow \{-1, 1\}$
is the map $f(-1) = 1$, $f(1) = -1$.
 $H_{0}(\{-1\}) \oplus H_{0}(\{1\}) \xrightarrow{\mathbb{Z}} H_{0}(S^{n})$
 $Z \oplus Z$
 (a, b)
 $a + b \in \mathbb{Z}$
 $a + b \in \mathbb{Z}$
 map

$$\begin{split} & \bigvee_{H_0}^{N} (S^{\circ}) & \xleftarrow_{\Xi}^{2} \left\{ (a_{1}, -a)_{1} a \in \mathbb{Z} \right\} (C \mathbb{Z} \oplus \mathbb{Z} \\ & \int_{(-a_{1}, a)}^{(a_{1}, -a_{1})} & \bigvee_{Z}^{1} \\ & \iint_{H_0}^{(a_{1}, -a_{1})} & \bigotimes_{Z}^{1} (a_{1}, -a_{1})_{(-a_{1}, a_{1})}^{(a_{1}, -a_{1})} \\ & & \iint_{H_0}^{(a_{1}, -a_{1})} & \bigotimes_{Z}^{1} (C \mathbb{Z} \oplus \mathbb{Z} \\ & & \iint_{H_0}^{(a_{1}, -a_{1})} & a \in \mathbb{Z} \\ & & & \iint_{H_0}^{(a_{1}, -a_{1})} & a \in \mathbb{Z} \\ & & & & \iint_{H_0}^{(a_{1}, -a_{1})} & a \in \mathbb{Z} \\ & & & & & \iint_{H_0}^{(a_{1}, -a_{1})} & a \in \mathbb{Z} \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ &$$

good pair excision + homologyo LES of a pair $\widetilde{H}_{N}(S^{n}) \xrightarrow{\cong} H_{N}(S^{n}, B^{n}_{+}) \xrightarrow{\cong} H_{N}(B^{n}_{-}, S^{n+}) \xrightarrow{\cong} H_{N-L}(S^{n+})$ $\int f^{\star} \qquad \int f^{\star}$ $\int (f|_{S^{n-1}})_{\star}$ fx]) $H_{n}(S^{n}) \xrightarrow{\simeq} H_{n}(S^{n}, B^{n},) \xrightarrow{\sim} H_{n}(B^{n}, S^{n-1}) \xrightarrow{\simeq} H_{n+1}(S^{n})$ $dig(f|_{S^{n-1}}) = -L \Longrightarrow$ By induction all vertical maps are multiplications by -1. COROLLARY Let $0 \le i \le n$, $\tau_i : S^n \rightarrow S^n$, $T_{i}(X_{o_{1}},X_{n}) = (X_{o_{1}},Y_{o_{1}},X_{n}),$ Then deg $(T_i) = -1$. Proof show that $T_i \stackrel{\sim}{=} T_{i-1} \stackrel{\sim}{=} \stackrel{\sim}{=} T_0$ (exercise) => deg ti = deg to

Hint for the homotopy: 2D case

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ ongleo}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} -x_0$$

IMPORTANT EXAMPLE (the antipodal map) Let $G:S^n \rightarrow S^n$ be the map G(x):=-x. Then $deg G = (-1)^{n+4}$.

Proof $6 = U_0 \circ U_1 \circ \ldots \circ U_n$ =) deg G= deg To deg Th deg Th $=(-T)_{\mu+\sqrt{r}}$ B

COROLLARY_ If n=even => 37/id.

COROLLARY

Let n be even and $f: s^n \rightarrow s^n$. Then there exists $x \in s^n$, s.t. $f(x) = \pm x$. Proof

Suppose by contradiction that $f(x) \neq x$, $f(x) \neq -x \quad \forall x \in S^n$. f(x)the straight segment in B^{n+1} connecting -xx to f(x) does not pass through 0.

the same also holds for the segment
connecting
$$-x$$
 to $f(x)$.
Consider $F: S^n \times I \rightarrow S^n$
 $G: S^n \times I \rightarrow S^n$: the denominators
 $F(x,t) := \frac{tf(x) + (1-t)x}{||tf(x) + (1-t)x||}$ the denominators
 $F(x,t) := \frac{tf(x) + (1-t)x}{||tf(x) + (1-t)x||}$ the denominators
 $G(x,t) := \frac{t \cdot (-x) + (1-t)f(x)}{||tf(x) + (1-t)f(x)||}$
 $G(x,t) := \frac{t \cdot (-x) + (1-t)f(x)}{||t \cdot (-x) + (1-t)f(x)||}$
F is a homotopy between id & f.
 G is a homotopy between f & the
another podal map.
 $\Rightarrow deg(f) = 1$ & $deg(f) = (-1)^{n+1} = -1$
 f is even

Contradiction.

