Consider the LES of $\left(K^{(n)}, K^{(n-1)}\right)$:

$$
\rightarrow H_{p+1}\left(K^{(n)}, K^{(n-1)}\right) \stackrel{\partial *}{\rightarrow} H_{p}\left(K^{(n-1)}\right) \stackrel{i *}{\rightarrow} H_{p}\left(K^{(n)}\right) \rightarrow H_{p}\left(K^{(n)}, K^{(n-1))_{p}^{*}}\right.
$$

- If $p \neq n$, then i_{*} is surjective.
- If $p \neq n-1$, then i_{*} is injective
- If $p \neq n, n-1$, then i_{*} is an isomorphism

Fix a positive index $p>0$. By induction on n it is easy to show that $H_{p}\left(K^{(n)}\right)=0 \quad \forall p>n$.
Basis; $n=0, H_{p}\left(K^{(0)}\right)=0 \quad \forall j>0$.
Similarly, it is easy to show hat for $p=n$ we have the exact sequence

$$
\begin{align*}
0 \rightarrow H_{n}\left(K^{(n)}\right) \xrightarrow{\partial_{n}} H_{n}\left(K^{(n)}, K^{(n-1))} \stackrel{\partial_{n}}{\rightarrow}\right. & H_{n-1}^{\downarrow}\left(K^{(n-1)}\right) \rightarrow H_{n-1}\left(K^{(n)}\right) \rightarrow 0 \tag{*}\\
& j_{n-1} \downarrow \\
& \beta_{n}:=j_{n-1} \circ \partial_{n}> \\
& H_{n-1}\left(K^{(n-1)}, K^{(n-2)}\right) \\
& \partial_{n-1} \downarrow \\
& H_{n-2}\left(K^{(n-2)}\right)
\end{align*}
$$

For $n+1$ we get

$$
\begin{aligned}
& 0 \rightarrow H_{n+1}\left(K^{(n+1)}\right) \rightarrow H_{n+1}^{j_{n+1}}\left(K^{(n+1)}, K^{(n)}\right) \xrightarrow{\partial_{n+1}} H_{n}\left(K^{(n)}\right)^{i_{n}} \rightarrow H_{n}\left(K^{(n-1)}\right) \rightarrow 0 \\
& \beta_{n+1} \unlhd H_{n}\left(K^{(n)}, K^{(n-1)}\right) \\
& \partial_{n} \downarrow \\
& H_{n-1}\left(K^{(n-1)}\right)
\end{aligned}
$$

CLAIM $\beta_{n} \circ \beta_{n+1}=0$
Proof $\beta_{n} \circ \beta_{n+1}=j_{n-1} \circ \partial_{n} \circ j_{n} \circ \partial_{n+1}=0$.
the above sequence is exact

CLAIM $\operatorname{ken} \beta_{n}=\operatorname{ken} \partial_{n}=\operatorname{Im} j_{n}$

$$
\operatorname{lm} \beta_{n+1}=j_{n}\left(\operatorname{lm} \partial_{n+1}\right) \text {. }
$$

Proof
j_{n-1} is injective, $\operatorname{ker} \beta_{n}=\operatorname{ker} \partial_{n}$.
$k e r \partial_{n}=1 m j_{n}$ because the sequence (*) is exact.
second equality: exercise (diagram chasing).
Conclusion $\left.\begin{array}{rl}H_{n}\left(K^{(n)}\right) \xrightarrow[j_{n}]{\cong} & \text { ken } \beta_{n} \\ U & \\ \operatorname{lm}\left(\partial_{n+1}\right) & \xrightarrow{j_{n}} \\ \underset{\sim}{\simeq} & \operatorname{lm} \beta_{n+1}\end{array}\right\}$

$$
\Rightarrow H_{n}\left(K^{(n+1)}\right) \cong \operatorname{coken}\left(\partial_{n+1}\right) \underset{\theta_{n}}{\stackrel{』}{\leftrightarrows}} \text { Ken } \frac{\beta_{n}}{I_{m}}
$$

Proof
$\ln (* *) \quad u_{n}$ io a surjection

$$
\begin{aligned}
H_{n}\left(K^{(n+1)}\right) & \cong H_{n} \frac{\left.K^{(n)}\right)}{k \operatorname{ker} i_{n}} \cong H_{n}\left(K^{(n)}\right) \\
& \cong \operatorname{coker}\left(\partial_{n+1}\right)
\end{aligned}
$$

CLAIM in

$$
H_{n}\left(k^{(n+1)}\right) \underset{i_{*}}{\rightarrow} H_{n}\left(k^{(n+2)}\right) \underset{i_{*}}{\rightarrow} H_{n}\left(K^{(n+*)}\right) \rightarrow \ldots
$$

all maps are isomorphisms.
Proof
Let int. then

$$
\underbrace{H_{n+1}\left(K^{(i+1)} K^{(i)}\right)}_{\substack{11 \\ 0}} \rightarrow H_{n}\left(K^{(i)}\right) \rightarrow H_{n}(\underbrace{\left(K^{(i+1)}\right)}_{\substack{11 \\ 0}}
$$

CO ROLLARY
If K is finite dimensional (子nos.t.

$$
\begin{aligned}
& K^{\left(n_{0}\right)}=K^{\left(n_{0}+1\right)}=\left.=K^{\left(n_{0}+i\right)}=\ldots=K\right) \text {, then } \\
& H_{n}(K) \cong H_{n}\left(K^{(n+1)}\right)=\operatorname{ker} \beta_{n} / \operatorname{Im} \beta_{n+1} \\
& H_{n}\left(K^{(n+2)}\right) \ldots H_{n}\left(K^{\left(n_{0}\right)}\right)=H_{n}(K)
\end{aligned}
$$

DEFINITiON
Define a chain complex

$$
\begin{aligned}
& \rightarrow H_{n+1}\left(K^{(n+1)}, K^{(n)}\right) \xrightarrow[\rightarrow]{\beta_{n+1}} H_{n}\left(K^{(n)}, K^{(n-1)}\right) \xrightarrow{\beta_{n}} H_{n-1}\left(K^{(n-1)}, K^{(n)}\right) p \\
& \quad \beta_{2} H_{1}\left(K^{(1)}, K^{(0)} \stackrel{\beta_{1}}{\rightarrow} H_{0}\left(K^{(0)}\right) \rightarrow 0\right.
\end{aligned}
$$

In this sequence β_{1} is the connecting homomorphism from LES of $\left(K^{(1)}, K^{(0)}\right)$
We denote the n-homology group of this complex by $H_{n}^{(w)}(K)$.
COROLLARY
If K is finite dimensional, then

$$
H_{n}^{c w}(k) \cong H_{n}(k) .
$$

Remark: this statement holds for any cw-complex K, but we will not prove it here.

Since $H_{p}\left(K^{(p)} K^{(p-1)}\right)$ is isomorphic to $\bigoplus_{b \in I_{p}}^{\oplus} \mathbb{Z} \cdot 6$, we will actually want to work with a chain complex with chair groups

$$
C_{p}^{(W)}(k)=\oplus \neq \mathbb{Z} \cdot \sigma
$$

DEFINITION
Define two fomomorphusins:

$$
c_{n}^{c w}(K) \underset{\Phi}{\stackrel{\Psi}{\rightleftarrows}} H_{n}\left(K^{(n)}, K^{(n-1)}\right)
$$

Recall that $\left(B_{G}^{n}, \partial B_{\sigma}^{n}\right) \xrightarrow{f_{\sigma}}\left(K^{(n)}, K^{(n-1)}\right)$.
Denote by $\left[B_{6}^{n}\right]$ the generator of $H_{n}\left(B_{b}^{n}, \partial B_{b}^{n}\right)$.

$$
\Psi\left(\sum_{\sigma} n_{\sigma} \cdot \sigma\right)=\sum_{\sigma} n_{G}\left(f_{\sigma}\right)_{*}\left(\left[B_{\sigma}^{n}\right]\right)
$$

To define Φ, let $\phi_{n}: H_{n}(\delta, *) \rightarrow \mathbb{Z}$
be the unique homomorptusim sit

$$
\phi_{n}\left(\left[S^{n}\right]\right)=1
$$

Recall

$$
\begin{aligned}
\left(K^{(n)}, K^{(n-1)}\right) & \rightarrow\left(K^{(n)} / K^{(n-1)}, *\right) \\
P_{b} & \searrow\left(S_{b}^{n}, *\right)
\end{aligned}
$$

Define

$$
\Phi(\alpha)=\sum_{\sigma \in I_{n}} \phi_{n}\left(\left(\rho_{\delta}\right)_{*}(\alpha)\right) \sigma
$$

We have already proved that I is an isomorphusis (the iso from the last lecture) - check the details yourself.
CLAIM

$$
\Phi=\Psi^{-1}
$$

Proof
It is enough to prove that $\Phi \circ \Psi=i d$ since Ψ is an isomorphism.
Since $c_{n}^{a w}(k)$ is generated by the n-cells 6 , it is enough to check Φ ow (σ) $=6 \quad \forall \sigma$.

$$
\begin{aligned}
\Phi \Psi(\sigma) & =\Phi\left(\left(f_{6}\right)_{*}\left[B_{\sigma}^{n}\right]\right)= \\
& =\sum_{\tau} \Phi_{n}\left(\left(P_{\tau}\right)_{*}\left(f_{\sigma}\right)+\left[B_{\sigma}^{n}\right]\right) \tau \stackrel{*}{=}
\end{aligned}
$$

Note that $P_{\tau} \circ f_{6}=\left\{\begin{array}{cr}\text { constr. at } * & \tau \neq 6 \\ \text { id. } & \tau=6\end{array}\right.$
So

$$
(*)=\phi_{n}\left(\left[S^{n}\right]\right) \cdot 6=6 .
$$

Define a boundary operator $c_{n+1}^{a s}(k) \frac{d_{n+1}}{c_{n}^{a s}}(k)$ by:

Clearly, $d_{n} \circ d_{n+1}=0$ because $\beta_{n} \circ \beta_{n+1}=0$.
Let us unite this differential explicitly. For $\sigma \in c_{n+1}^{a s}(K)$, wite

$$
d_{n+1}(b)=\sum_{\tau \in I_{n} \in \mathbb{Z}}[\tau: \sigma] \cdot \tau
$$

