INTRODUCTION
What is topology! It is a study of topological spaces
up to a homeomorphism (or some
other gruivalence)
One way to study topological spaces is
One way to study topological spaces is by using ALGEBRA, my ALGEBRAIC TOPOLOGY
How: by assigning algebraic objects to topological spaces
Top => (Als

Top
$$\Rightarrow$$
 Alg

Invariants

 \Rightarrow $G(x)$ of topological

Spaces

 \Rightarrow $G(x) \approx G(y)$

Examples:

- FUNDAMENTAL GROUP $\mathcal{T}_{\gamma}(x,x_o)$ (point-set topology class
 at ETH)
- · HIGHER HOMOTOPY GROUPS

CONVENTO NS:

- · Space = topological space
- · X topological space, ACX with the enduced topology (from X) is called

a subspace

- · f: X -> Y map = continuous map
- Means such a map $f:X \to Y$ s.t.

 $f(A) \subset B$.

QUOTIENT TOPOLOGY

Let x be a topological space, I a set $g: X \rightarrow Y$ surjective (onto).

Define a topology on I as follows: VCY open $\Leftarrow 79^{-1}(v)cx$ is open. this is the finest topology that makes 2 continuous, it is collect the

QUOTIENT TOPOLOGY on I.

Examples

1) X topological space, v an equivalence relation on X. Let Y= X/ (the set of all equivalence classes). Then 2: X -> I is Surjective g (x)=[x]

we can excup I with the quotent

topology.
2) X = topological space, ACX subspace.
We can define an equivalence relation
on X as follows: $x \sim y$ of either $x, y \in A$ x = y
The equivalence classes are:
$\begin{cases} \begin{bmatrix} x \end{bmatrix} \end{cases}_{x \in X \setminus A} \begin{bmatrix} A \end{bmatrix}$
The gustient spou X/A is equipped
with the gustent topology.
WARNING: This definition is not the same as the group theory definition
of S/H, where G is a group & H
to a subshalp.

Example: (1) I=[0,1], A=D= 20,1}

Then

I/A S1 & circle

Thomeo.

of 11 identify 0&1 point corresponding to 0 & 1

More generally, In 25° spinere spinere

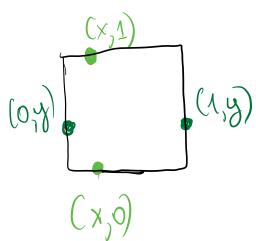
Here $T^{n}=I\times I\times I...\times I=\{(x_n...,x_n): \times_i \in I\}$ n times

 $\partial I^{n} = \{ (x_{n}, x_{n}) \in I^{n} \mid \exists j \in X_{j} = 0 \}$ or $X_{j} = \Delta \}$

 $S^{n} = \left\{ \left(\chi_{1}, \chi_{1}, \chi_{1} \right) \in \mathbb{R}^{n+1} \mid \chi_{1}^{2}, \chi_{2}^{2}, \chi_{1}^{2}, \chi_{1}^{2} \right\}$ Exercise.

h=2

 $(2) \quad X = I \times I$



 $(x,0)\sim(x,1)$ $\forall x\in T$ $(0,y)\sim(1,y)$ $\forall y\in T$

The strains

2-dimensional torus (or donut)

HOMOTOPY

Definition

Let X,X be topological spaces. A HOMOTOPY
of maps from X to I is a map

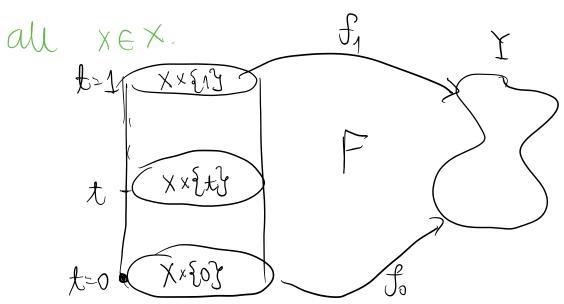
F:XXI->Y.

Equivalently, F is a continuous 1-parameter

family of maps $f_{\pm}: X \to X$, where $f_{\pm}(X) = F(X, \pm)$, te I.

Definition
Two maps f_{0} and $f_{1}: X \to X$ are

Said to be HOMOTOPIC of there exists a homotopy $F: XXI \rightarrow Y$ such that $F(x,4) = f_1(x)$ for $F(x,0) = f_0(x)$ and $F(x,4) = f_1(x)$ for



Notation

We wite $\mathbf{f} \cdot \mathbf{c} \cdot \mathbf{f}_1$ if f_0 is honotopic to f_1 .

Example Any two maps $f_1 \cdot \mathbf{g} : X \to \mathbb{R}^2$ are homotopic. Homotopy (called LINEAR HOMOTOPY) is siven by $x \mapsto (1-t) f(x) + t g(x)$, $x \in X, t \in I$.

Proposition

If $f \approx g$, then $f \circ k \approx g \circ k$ and $f \circ k \approx g \circ k \circ g$.

Key $f \approx g \circ k \circ g$.

Exercise.

Definition

A map f: X -> I is called a HOMOTOPY

EQUIVALENCE & g: I -> X exists St.

gof ridx and fog ridy.

When ruch fly exist, the spaces X & I

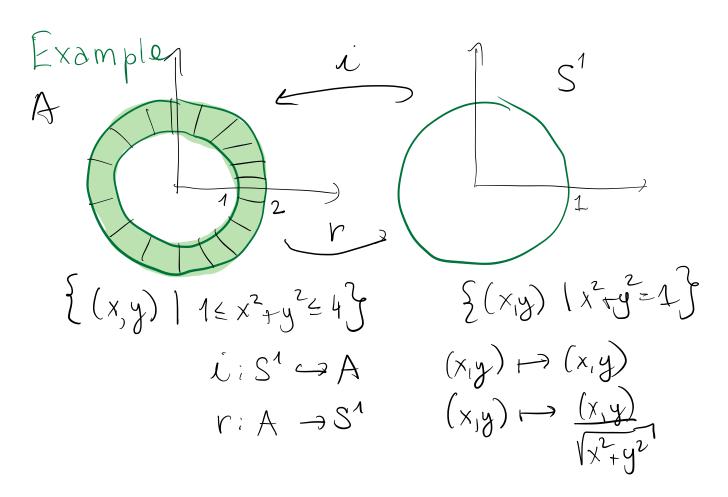
one said to be HOHOTOPY EQUIVALENT or have the same HOHOTOPY TYPE.

Notation: $X \cong Y$.

Proposition.

~ is an equivalence relation on topological spaces.

Exercise.



roi: S¹ → S¹ is the identity map. ior: A → A

F:
$$A \times I \rightarrow A$$

F: $(x,y),t) = t(x,y) + (1-t)\frac{(x,y)}{\sqrt{x^2+y^2}}$

This propries

P($(x,y),0$)= $\frac{(x,y)}{\sqrt{x^2+y^2}} = r((x,y))$

continuous

F($(x,y),1$) = $(x,y) = id_A(x,y)$

So FiAXI) A is a homotopy between ion and id.

therefore, annulus and Circle

are homotopy equivalent.

They are not homeomorphic.

(thought on had to)

THERE EXIST HOMOTOPY EQUIVALENT

SPACES THAT ARE NOT HOMEOMORPHIC.

Definition A space X is called CONTRACTIBLE If x is homotopy equivalent to the one-point space. x => Exoy c.i = id ioc = id Proposition Let X be a space, x, EX. Let c:X -> X be the constant map $c(x)=X_0 \forall x \in X$. X is contractible <=> C ~ idx. Prof (X is contractible. < c ~ idx) hat c:x>x be such that c(x)=xo. Let i. {x, y -> x

 $\gamma : \chi \to \{x, y\}$

then roi=id=x3 & ion =idx => X is contractible. C by assumption (x is contractible => c ~ idx) $C(x)=X_{o}$ for $x \in X$. Since X is contractible, there exist i & r $\mathcal{X} \leftarrow \mathcal{Y}_{\circ} \times \mathcal{Y}_{\circ} \rightarrow X$ such that $f': \chi \rightarrow \{\chi_0\}$ fof idexor foffer WX contant map c' $C'(x_0)=f(f(x_0))=$ $= \int_{\mathbb{R}} (\chi)$ $H(x_0,0) = X_0$

H(xo,t) is a path H (xo,1)= C1(xo) from xo to ci(xo)

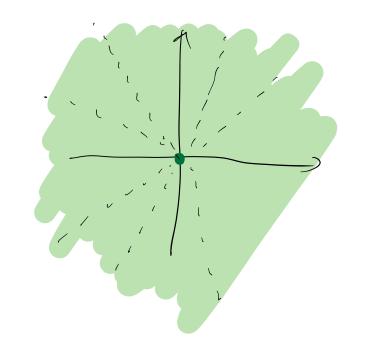
Homotopy between C' and C is given by $F(x,t) = H(x_0,t)$ for $t \in [0,1]$. C Homotopy between id

Homotopy between id & &C

c' is given by $H \times F = \begin{cases} H(xyx) & 0 \le t \le \frac{1}{2} \\ H(x_o, 2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$

Concateration of Romotopies

Example X=Rh is contractible.



F(x,t)=t.x id & a constant F(x,0)=0F(x,1)=x=id_{Rr}(x)