RETRACTIONS, DEFORMATION RETRACTIONS Pefinition

Let X be a space and AcX. A RETRACTION $r: X \rightarrow A$ is a map s.t. r(a)=a $\forall a \in A$. We say that A is a RETRACT of X. A subspace A of X is called a STRONG **DEFORMATION RETRACT** of X if there exists a homotopy $F: X \times I \rightarrow X$ (called a DEFORMATION) such that

DEFORMATION F(x,0)=XRETRACTION $F(x,1)\in A$ F(a,t)=a for a eA and $all t\in I$.

It is called a **DEFORMATION RETRACT** if the last equation is reputed only for t=1.

Comment: A deformation retract A of a space X Is homotopically equivalent to X. Example (1) EOYCRn is a strong deformation retract. (2) S1 is a strong deformation retract $A (\bigcirc)$ 0} *troposition* If ACX is a dependion what then $\chi \simeq \Lambda$. Proof ACX def. Let. $F: X \times \Sigma \to X$ F(x, 0) = id $F(x, 1) \in A$ for $\forall \chi \in X$ F(a,1)=a for atA. i:ASX

 $F(-,1): X \rightarrow A$

F(-1) ~i = id, by def. of Fli $j \circ F(-,4) = F(-,4) \stackrel{\sim}{\rightharpoonup} \partial d$ by def.

So X ~ A.

PAIRS OF SPACES

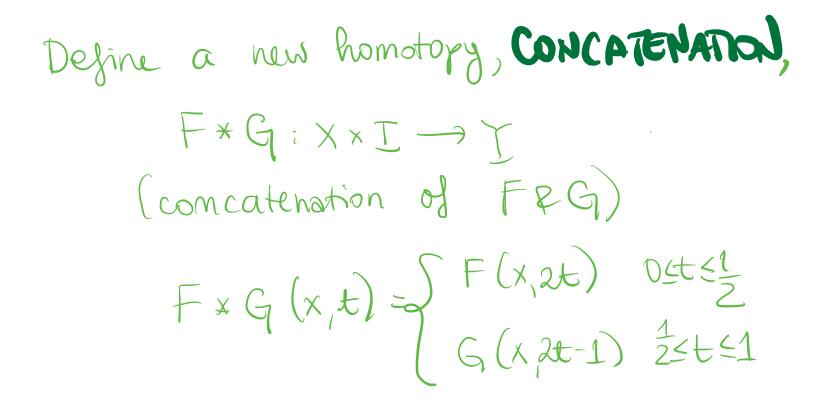
Definition Let X, I be topological spaces and ACX & BCI. $f:(X,A) \rightarrow (Y,B)$ means $f: X \to Y$ such that $f(A) \subset B$. Let $f_0, f_1: (X, A) \rightarrow (\Upsilon, B)$ be maps of pairs. We say they are homotopic if $\exists F: X \times I \rightarrow I \quad \text{with } F(x,0) = f_0(x)$ $F(x,1)=f_1(x)$ $\forall x \in X$ and such that

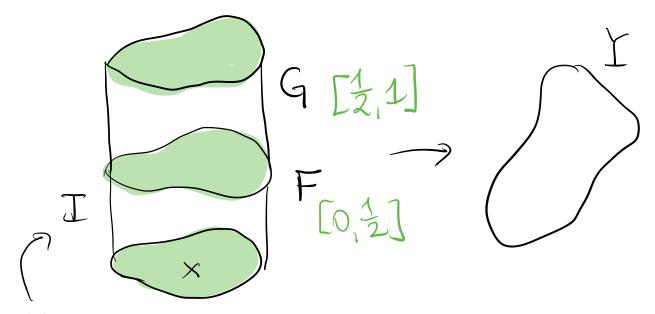
F(a,t) $\in B$ Fact, tet. Definition AC × subspace. A HOHOTOPY F:×× $T \rightarrow Y$ is called **RELATIVE to A** if F(a,t) is independent of t Fact. If $f_0 = F(-, 0)$, $f_1 = F(-, 1)$ we write $f_0 \approx f_1$. rel.A

Example A strong deformation retraction is $x \rightarrow x$ is a homotopy relative to the subspace A.

OPERATIONS WITH HOHOTOPIES

Definition Let $F: x \times I \rightarrow Y, G: x \times I \rightarrow Y$ be two homotopies, $G(x, 0) = F(x, 1) \neq x \in X$.



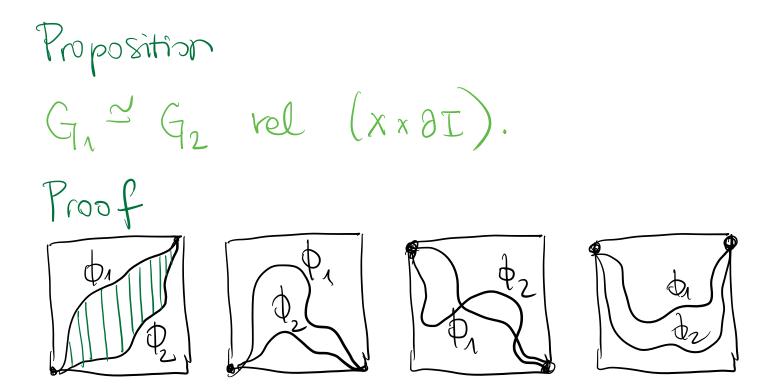


reportametri ze

One does not need to combine these homotopies at $t=\frac{1}{2}$. We can do it at any point and with

aubitrary speed.

Definition Let ϕ_1, ϕ_2 : $(I, \partial I) \rightarrow (I, \partial I)$ s.t. $\varphi_1 |_{\partial \Gamma} = \varphi_2 |_{\partial \Gamma} \begin{pmatrix} \varphi_1(0) - \varphi_2(0) \\ \varphi_1(1) - \varphi_2(0) \end{pmatrix}$ Let $F: X \times I \to Y$ be a homotopy. Define $G_1(x,t) = F(x,\phi_1(t))$ $G_2(x,t) = F(x,\phi_2(t))$ REPARAMETRIZATIONS OF



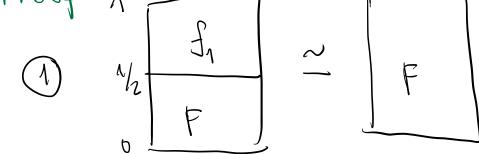
In each of there 4 cases we can
use the straight line homotopy:

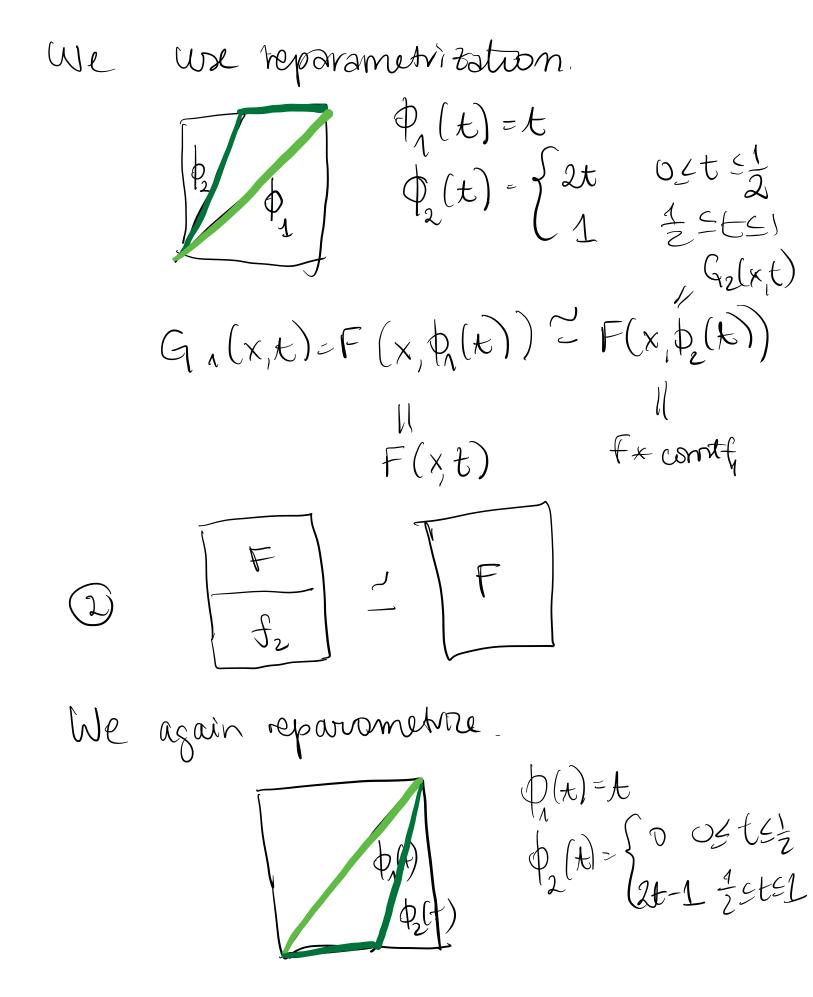
$$b \phi_2(t) + (1-s) \phi_1(t)$$

 $H:(x \times I) \times I \longrightarrow I$
 $H(x,t,s) = F(x, b\phi_2(t) + (1-s) \phi_1(t))$
 $H(x,t,s) = F(x, \phi_1(t)) = G_1$
 $H(x,t,s) = F(x, \phi_2(t)) = G_2$
 $H(x,t,s) = F(x, \phi_2(t)) = G_2$
 $H(x,0,s) = F(x, \phi_1(0)) = G_1(x,0)$
 $H(x,1,s) = F(x, \phi_2(1)) = G_2(x,1)$
 $H(x,1,s) = F(x, \phi_2(1)) = G_2(x,1)$
 $H(x,1,s) = F(x, \phi_2(1)) = G_2(x,1)$
 $H(x,1,s) = F(x, \phi_2(1)) = G_2(x,1)$

Definition Let f:x > Y. the CONSTANT HOHOTOPY on f_{1} const $(f): X \land I \rightarrow Y$ is defined by $Const(f)(x,t)=f(x) \forall x \in X, t \in T$.

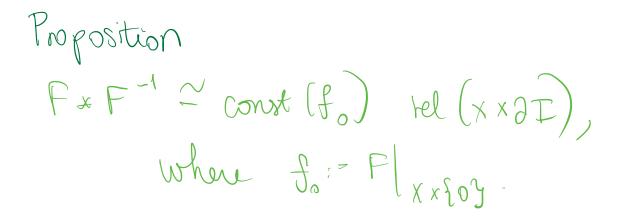
Proposition let F: XXI-Y be a homotopy, $f_0 := \mathbb{F}|_{X \times 0}$ $f_1 := \mathbb{F}|_{X \times 1}$ F* const(f) ~ F rel (X×2I) then $\operatorname{Const} f_{z} * F \cong F \operatorname{rel}(x \times \partial F)$ Proof

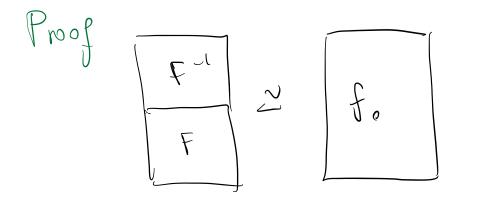




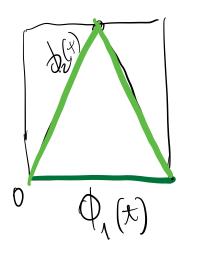
THE INVERSE HOMOTOPY

Definition Let $F: X \times I \rightarrow Y$ be a homotopy. then $F^{-1}: X \times I \rightarrow Y$ is defined by $F^{-1}(x,t):=F(x,1-t)$.



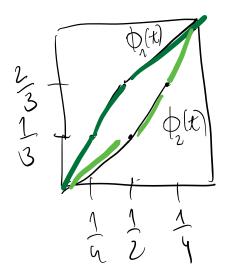


We will use the statement about reparametrizations.



 $\phi'(x) = 0$ $\phi_2(t) = \begin{cases} 2t & 0 \le t \le \frac{1}{2} \\ 2 - 2t & \frac{1}{2} \le t \le 1 \end{cases}$

Proposition Let F_1G_1H be three homotopiles $X \times I = 7Y$ S.t. $F \times G \otimes G \times H$ are defined. then $(F \times G) \times H \simeq F \times (G \times H)$ $rel(x \times 2T)$



Exercise.

Troposition Let FIFZ, GI, GZ be homotopilo XXI ->Y with Fring Fr Hel (xxZI) and Grig Gz Hel (xxZI) A.K. F(x,1)= G, (x,0)& F2(x,1)=G, (x,0) + xex. then $F_1 \times G_1 \stackrel{\sim}{=} F_2 \times G_1$ Hel $(x \times \partial I)$. Proof Exercise.

Proposition v is an equivalence relation on the set of all maps $X \to Y$.