Axiomatische Mengenlehre

Serie 1

Ordinalzahlen

Besprechung am 5. Oktober

Im Folgenden bezeichnet Ω die Klasse aller Ordinalzahlen. In der Sprache der Mengenlehre ist $\alpha \in \Omega$ bloss eine abgekürzte Schreibweise für " α ist eine Ordinalzahl", was wiederum bloss eine abgekürzte Schreibweise ist für " α ist eine transitive Menge, welche durch die Relation \in wohlgeordnet wird".

- **3.** Sei $\delta_0 \in \Omega$, $x \subseteq \delta_0$, und $\alpha \in x$.
 - (a) Zeige: $x \cap (\alpha \cup \{\alpha\}) \neq \emptyset$.
 - (b) Sei γ das \in -minimale Element von $x \cap (\alpha \cup \{\alpha\})$. Zeige, dass γ das \in -minimale Element von x ist.
- **4.** Zeige: Gilt $\emptyset \in \alpha \in \beta \in \Omega$, dann ist $(\beta \setminus \alpha) \notin \Omega$.
- **5.** Zeige: Ist $\alpha \in \beta \in \Omega$, dann ist $\alpha \cup \{\alpha\} \subseteq \beta$.
- **6.** Sei $\alpha \in \Omega$. Zeige, dass folgendes gilt:
 - (a) $\cup \alpha \subseteq \alpha$
 - (b) $\cup \alpha \in \Omega$
 - (c) $\cap \alpha = \emptyset$, d.h. $\cap \alpha \in \Omega$
- 7. Seien α und β beliebige Ordinalzahlen.

Zeige, dass die folgenden Mengen ebenfalls Ordinalzahlen sind.

- (a) $\bigcup (\beta \setminus \alpha)$
- (b) $\bigcap (\beta \setminus \alpha)$
- (c) $\alpha \cup \beta$
- (d) $\alpha \cap \beta$
- **8.** Zeige: Ist x eine Menge von Ordinalzahlen, so gilt $\cup x \in \Omega$ und $\cap x \in \Omega$.